定義在R上的奇函數f(x)為增函數,偶函數g(x)在區間[0,+∞)上的圖象與f(x)的圖象重合,設a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a).
其中成立的有( )
【考點】奇偶性與單調性的綜合.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 14:0:0組卷:60引用:2難度:0.6
相似題
-
1.設f(x)是連續的偶函數,且當x>0時,f(x)是單調函數,則滿足f(x)=f(
)的所有x之和為( )x+3x+4A.-8 B.-3 C.8 D.3 發布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數中,既是偶函數,又在區間(0,1)上單調遞增的函數是( )
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數f(x)是定義在R上的奇函數,當x∈(0,+∞)時,f(x)=2log2(2x+1)-1,則下列說法正確的是( )
A. f(-72)=5B.當x∈(-∞,0)時,f(x)=1-2log2(-2x+1) C.f(x)在R上單調遞增 D.不等式f(x)≥1的解集為 [12,+∞)發布:2024/12/28 23:30:2組卷:69引用:8難度:0.6