學完整式的乘法公式后,愛思考的小麗同學為了探究公式之間的聯(lián)系,她把一個長為2a,寬為2b的長方形沿圖1中虛線用剪刀平均分成四個小長方形,然后拼成一個大正方形(如圖2).請你根據(jù)小麗的操作回答下列問題:
(1)圖1中每個小長方形的長和寬分別為 a、ba、b,圖2中大正方形的邊長為 (a+b)(a+b),中間小正方形(陰影部分)的邊長為 (a-b)(a-b)(均用含a,b的式子表示);
(2)小麗發(fā)現(xiàn)可以用兩種方法求圖2中小正方形(陰影部分)的面積,請你幫她寫出來(直接用含a,b的式子表示,不必化簡):方法1:4ab4ab,方法2:(a+b)2-(a-b)2(a+b)2-(a-b)2.
(3)根據(jù)(2)中的結論,探究(a+b)2,(a-b)2,ab間的等量關系.
【考點】完全平方公式的幾何背景.
【答案】a、b;(a+b);(a-b);4ab;(a+b)2-(a-b)2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/8 15:30:1組卷:50引用:1難度:0.5
相似題
-
1.請認真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關系?請用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:
①a+b的值;
②a4-b4的值.發(fā)布:2025/6/8 16:0:1組卷:4800引用:21難度:0.3 -
2.如圖,現(xiàn)有一塊長為(a+4b)米,寬為(a+b)米的長方形地塊,規(guī)劃將陰影部分進行綠化,中間預留部分是邊長為(a-b)米的正方形.
(1)求綠化的面積S(用含a,b的代數(shù)式表示,并化簡);
(2)若a=3,b=2,綠化成本為100元/平方米,則完成綠化共需要多少元?發(fā)布:2025/6/8 18:30:1組卷:150引用:3難度:0.5 -
3.【探究】如圖①,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,將陰影部分沿虛線剪開,拼成圖②的長方形.
(1)請你分別表示出這兩個圖形中陰影部分的面積;
(2)比較兩圖的陰影部分面積,可以得到乘法公式:(用字母表示);
【應用】請應用這個公式完成下列各題:
計算:
(2a+b-c)(2a-b+c).發(fā)布:2025/6/8 17:30:2組卷:74引用:1難度:0.6