請閱讀下面材料,并完成相應的任務;
阿基米德折弦定理
阿基米德(Archimedes,公元前287-公元前212年,古希臘)是有史以來最偉大的數學家之一,他與牛頓、高斯并稱為三大數學王子.
阿拉伯Al-Biruni(973年-1050年)的譯文中保存了阿基米德折弦定理的內容,蘇聯在1964年根據Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是?ABC的中點,則從點M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.
這個定理有很多證明方法,下面是運用“垂線法”證明CD=AB+BD的部分證明過程.

證明:如圖2,過點M作MH⊥射線AB,垂足為點H,連接MA,MB,MC.
∵M是?ABC的中點,
∴MA=MC.
…
任務:
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖3,已知等邊三角形ABC內接于⊙O,D為?AC上一點,∠ABD=15°,CE⊥BD于點E,CE=2,連接AD,則△DAB的周長是 4+224+22.
?
ABC
?
ABC
?
AC
2
2
【考點】圓的綜合題.
【答案】4+2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:755引用:4難度:0.1
相似題
-
1.已知⊙O的直徑AB=2,弦AC與弦BD交于點E,且OD⊥AC,垂足為點F.
(1)如圖1,若AC=BD,求線段DE的長.
(2)如圖2,若DE:BE=3:2,求∠ABD的正切值.
(3)連結BC,CD,DA,若BC是⊙O的內接正n邊形的一邊,CD是⊙O的內接正2n邊形的一邊,求△ACD的面積.發布:2025/5/24 21:30:1組卷:239引用:1難度:0.3 -
2.在Rt△ABC中,∠C=90°.
(1)如圖①,點O在斜邊AB上,以點O為圓心,OB長為半徑的圓交AB于點D,交BC于點E,與邊AC相切于點F.求證:∠1=∠2;
(2)在圖②中作⊙M,使它滿足以下條件:
①圓心在邊AB上;②經過點B;③與邊AC相切.
(尺規作圖,只保留作圖痕跡,不要求寫出作法)發布:2025/5/24 21:30:1組卷:833引用:9難度:0.3 -
3.如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:直線DF是⊙O的切線;
(2)求證:BC2=4CF?AC;
(3)若⊙O的半徑為4,∠CDF=15°,求陰影部分的面積.發布:2025/5/24 21:0:1組卷:2988引用:17難度:0.5