已知:在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx-3(a>0)的圖象與x軸交于A,B兩點,點A在點B的左側,與y軸交于點C,且OC=OB=3OA.
(1)求這個二次函數(shù)的解析式;
(2)設點D是點C關于此拋物線對稱軸的對稱點,直線AD,BC交于點P,試判斷直線AD,BC是否垂直,并證明你的結論;
(3)在(2)的條件下,若點M,N分別是射線PC,PD上的點,問:是否存在這樣的點M,N的坐標,使得以點P,M,N為頂點的三角形與△ACP全等?若存在,請求出點M,N的坐標;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;
(2)直線AD,BC垂直,理由見解答;
(3)M的坐標為(0,-3)或(-1,-4),點N的坐標為點N的坐標為(3,-4)或(2,-3).
(2)直線AD,BC垂直,理由見解答;
(3)M的坐標為(0,-3)或(-1,-4),點N的坐標為點N的坐標為(3,-4)或(2,-3).
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/17 11:30:1組卷:129引用:1難度:0.4
相似題
-
1.如圖,拋物線y=
(x+2)(x-8)與x軸交于A,B兩點,與y軸交于點C,頂點為M,以AB為直徑作⊙D.下列結論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結論的個數(shù)是( )14A.1 B.2 C.3 D.4 發(fā)布:2025/6/17 18:30:1組卷:2558引用:19難度:0.7 -
2.如圖,直線y1=-x+3與x軸于交于點B,與y軸交于點C.拋物線y2=-x2+bx+c經過B、C兩點,并與x軸另一個交點為A.
(1)求拋物線y2的解析式;
(2)若點M在拋物線上,且S△MOC=4S△AOC,求點M的坐標;
(3)設點P是線段BC上一動點,過P作PQ⊥x軸,交拋物線于點Q,求線段PQ長度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.已知:如圖,拋物線y=ax2+4x+c經過原點O(0,0)和點A(3,3),P為拋物線上的一個動點,過點P作x軸的垂線,垂足為B(m,0),并與直線OA交于點C.
(1)求拋物線的解析式;
(2)當點P在直線OA上方時,求線段PC的最大值;
(3)過點A作AD⊥x軸于點D,在拋物線上是否存在點P,使得以P、A、C、D四點為頂點的四邊形是平行四邊形?若存在,求m的值;若不存在,請說明理由.發(fā)布:2025/6/17 18:0:1組卷:2088引用:13難度:0.2