如圖,在Rt△ABC中,∠ACB=90°,點D為斜邊AB上一點,連接CD,將CD繞點C順時針旋轉90°,得到CE,連接DE交AC于點F.

(1)如圖1,若BC=23+2,∠A=30°,D為AB的中點,求CF的長度;
(2)如圖2,ED⊥AB于點D,G為DE邊上一點,且FG=12AB,求證:CG=AD+EG;
(3)如圖3,若BC=23+2,∠A=30°,當△DFC為等腰三角形時,直接寫出△DFC面積的最大值.
BC
=
2
3
+
2
FG
=
1
2
AB
BC
=
2
3
+
2
【考點】幾何變換綜合題.
【答案】(1)4;
(2)證明見解析部分;
(3)8+4.
(2)證明見解析部分;
(3)8+4
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/11 8:0:9組卷:323引用:2難度:0.1
相似題
-
1.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結論的序號是.發布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數;
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉60°得△CMH,E點對應點為M,G點的對應點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.如圖1,在Rt△ABC中,∠BAC=90°,∠ACB=60°,AC=1,點A1,B1為邊AC,BC的中點,連接A1B1,將△A1B1C繞點C逆時針旋轉α(0°≤α≤360°).
(1)如圖1,當α=0°時,=;BB1,AA1所在直線相交所成的較小夾角的度數是 ;BB1AA1
(2)將△A1B1C繞點C逆時針旋轉至圖2所示位置時,(1)中結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)當△A1B1C繞點C逆時針旋轉過程中,請直接寫出S△ABA1的最大值,S△ABA1=.發布:2025/5/22 19:0:1組卷:432難度:0.4