已知拋物線L:y=ax2-52x+c經(jīng)過點A(0,2)、B(5,2),且與x軸交于C、D兩點(點C在點D左側(cè)).
(1)求點C、D的坐標(biāo);
(2)判斷△ABC的形狀;
(3)把拋物線L向左或向右平移,使平移后的拋物線L′與x軸的一個交點為E,是否存在以A、B、C、E為頂點的四邊形是平行四邊形?若存在,請求出拋物線L′的表達式及平移方式;若不存在,請說明理由.
L
:
y
=
a
x
2
-
5
2
x
+
c
【考點】二次函數(shù)綜合題.
【答案】(1)C(1,0),D(4,0);(2)△ABC是直角三角形,理由見解析;(3)存在以A、B、C、E為頂點的四邊形是平行四邊形,當(dāng)m=-2時,即將拋物線L向右平移2個單位,得到新拋物線L′的解析式為y=-x+9;當(dāng)m=-5時,即將拋物線L向右平移5個單位,得到新拋物線L′的解析式為y=-x+27;當(dāng)m=5時,即將拋物線L向左平移5個單位,得到新拋物線L′的解析式為y=x+2;當(dāng)m=8時,即將拋物線L向左平移8個單位,得到新拋物線L′的解析式為y=x+14.
1
2
x
2
9
2
1
2
x
2
15
2
1
2
x
2
+
5
2
1
2
x
2
+
11
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:105引用:1難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標(biāo)是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:83引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3880引用:38難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發(fā)布:2024/12/26 1:30:3組卷:2683引用:7難度:0.7
相關(guān)試卷