已知拋物線y=-x2+2mx-m2+2的頂點(diǎn)A在第一象限,過點(diǎn)A作AB⊥y軸于點(diǎn)B,C是線段AB上一點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)C作CD⊥x軸于點(diǎn)D并交拋物線于點(diǎn)P.
(1)若m=4,拋物線交x軸于G、H兩點(diǎn),求GH的長度;
(2)若點(diǎn)C(1,a)是線段AB的中點(diǎn),求點(diǎn)P的坐標(biāo);
(3)若直線AP交y軸的正半軸于點(diǎn)E,且AC=CP,求△OEP的面積S的取值范圍.(請畫出示意圖再作答)
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)2;
(2)(1,1);
(3)0<S≤.
2
(2)(1,1);
(3)0<S≤
1
8
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/16 17:0:8組卷:103引用:1難度:0.1
相似題
-
1.在平面直角坐標(biāo)系xOy中,一次函數(shù)
的圖象經(jīng)過點(diǎn)B(4,0),交y軸于點(diǎn)A,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)A,且對稱軸為直線x=-1.y=-34x+m
(1)請求出m,b,c的值;
(2)點(diǎn)C為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)P,使得以點(diǎn)P、O、C為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),不必說明理由;若不存在,請說明理由;
(3)將直線AB向下平移a個(gè)單位,使得直線AB與拋物線有且只有一個(gè)交點(diǎn),求a的值;
(4)點(diǎn)D在y軸上,且位于點(diǎn)A下方,點(diǎn)M在二次函數(shù)的圖象上,點(diǎn)N在一次函數(shù)的圖象上,使得以點(diǎn)A、D、M、N為頂點(diǎn)的四邊形是菱形,求點(diǎn)M的坐標(biāo).發(fā)布:2025/6/8 1:0:1組卷:104引用:2難度:0.1 -
2.如圖①,定義:直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點(diǎn).將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過點(diǎn)A,B,D的拋物線P叫作直線l的“糾纏拋物線”,反之,直線l叫做拋物線P的“糾纏直線”,兩線“互為糾纏線”.
(1)已知直線l:y=-2x+2,則它的糾纏拋物線P的函數(shù)解析式是 .
(2)判斷y=-2x+2k與是否“互為糾纏線”并說明理由.y=-1kx2-x+2k
(3)如圖②,已知直線l:y=-2x+4,它的糾纏拋物線P的對稱軸與CD相交于點(diǎn)E.點(diǎn)F在直線l上.點(diǎn)Q在拋物線P的對稱軸上,當(dāng)以點(diǎn)C,E,Q,F(xiàn)為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),直接寫出點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/7 21:0:1組卷:47引用:1難度:0.3 -
3.如圖,一條拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線段MN上移動.若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( )
A.-3 B.-1 C.1 D.3 發(fā)布:2025/6/8 8:0:6組卷:4103引用:19難度:0.7