在平面直角坐標系xOy中,⊙O的半徑為1.對于點A和線段BC,給出如下定義:若將線段BC繞點A旋轉可以得到⊙O的弦B′C′(B′,C′分別是B,C的對應點),則稱線段BC是⊙O的以點A為中心的“關聯(lián)線段”.
(1)如圖,點A,B1,C1,B2,C2,B3,C3的橫、縱坐標都是整數(shù).在線段B1C1,B2C2,B3C3中,⊙O的以點A為中心的“關聯(lián)線段”是 B2C2B2C2;
(2)△ABC是邊長為1的等邊三角形,點A(0,t),其中t≠0.若BC是⊙O的以點A為中心的“關聯(lián)線段”,求t的值;
(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以點A為中心的“關聯(lián)線段”,直接寫出OA的最小值和最大值.
【考點】圓的綜合題.
【答案】B2C2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/28 8:0:9組卷:183引用:3難度:0.2
相似題
-
1.[問題提出]
(1)如圖1,已知線段AB=4,點C是一個動點,且點C到點B的距離為2,則線段AC長度的最大值是 ;
[問題探究]
(2)如圖2,以正方形ABCD的邊CD為直徑作半圓O,E為半圓O上一動點,若正方形的邊長為2,求AE長度的最大值;
[問題解決]
(3)如圖3,某植物園有一塊三角形花地ABC,經(jīng)測量,AC=20米,BC=120米,∠ACB=30°,BC下方有一塊空地(空地足夠大),為了增加綠化面積,管理員計劃在BC下方找一點P,將該花地擴建為四邊形ABPC,擴建后沿AP修一條小路,以便游客觀賞.考慮植物園的整體布局,擴建部分△BPC需滿足∠BPC=60°.為容納更多游客,要求小路AP的長度盡可能長,問修建的觀賞小路AP的長度是否存在最大值?若存在,求出AP的最大長度;若不存在,請說明理由.3發(fā)布:2025/5/23 10:30:1組卷:904引用:8難度:0.2 -
2.問題研究.
如圖1,AD是△ABC的中線,AH是BC邊上的高.
(1)當AH=6,CD=5,DH=3時,AB=.
(2)求證:AB2+AC2=2AD2+2BD2.
問題解決
(3)某地為打造元宵節(jié)燈展景觀,需按如下要求設計一批燈展造型.如圖2,矩形ABCD是造型框架,以頂點A為圓心懸掛圓形燈架(⊙A),以B,C為頂點釘兩個正方形展板(正方形BEHG和正方形CENM),接合點點E恰好在⊙A上.若AD=1.4m,AB=2.4m,⊙A的半徑為0.7m,求兩個正方形展板面積和的最小值.發(fā)布:2025/5/23 10:30:1組卷:128引用:3難度:0.1 -
3.如圖,已知O是△ABC邊AB上的一點,以O為圓心、OB為半徑的⊙O與邊AC相切于點D,且BC=CD,連接OC,交⊙O于點E,連接BE并延長,交AC于點F.
(1)求證:BC是⊙O切線;
(2)求證:OA?AB=AD?AC;
(3)若,求EO的長.AC=10,tan∠BAC=43發(fā)布:2025/5/23 11:30:2組卷:738引用:4難度:0.3