定義:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c滿足ac+a2=b2,則稱這個三角形為“類勾股三角形”,請根據以上定義解決下列問題:
(1)命題“直角三角形都是類勾股三角形”是假假命題(填“真”或“假”);
(2)如圖1,若等腰三角形ABC是“類勾股三角形”,其中AB=BC,AC>AB,請求∠A的度數;
(3)如圖2,在△ABC中,∠B=2∠A,且∠C>∠A.
①當∠A=32°時,你能把這個三角形分成兩個等腰三角形嗎?若能,請在圖2中畫出分割線,并標注被分割后的兩個等腰三角形的頂角的度數;若不能,請說明理由;
②請證明△ABC為“類勾股三角形”.

【考點】三角形綜合題.
【答案】假
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/6 8:0:9組卷:558引用:4難度:0.1
相似題
-
1.【問題呈現】某學校的數學社團成員在學習時遇到這樣一個題目:
如圖1,在△ABC中,AB>AC,AD平分∠BAC交BC于點D,點E在DC的延長線上,過E作EF∥AB交AC的延長線于點F,當BD:DE=1時,試說明:AF+EF=AB;
【方法探究】
社團成員在研究探討后,提出了下面的思路:
在圖1中,延長線段AD,交線段EF的延長線于點M,可以用AAS明△ABD≌△MED,從而得到EM=AB…
(1)請接著完成剩下的說理過程;
【方法運用】
(2)在圖1中,若BD:DE=k,則線段AF、EF、AB之間的數量關系為 (用含k的式子表示,不需要證明);
(3)如圖2,若AB=7,EF=6,AF=8,BE=12,求出BD的長;
【拓展提升】
(4)如圖3,若DE=2BD,連接AE,已知AB=9,tan∠DAF=,AE=212,且AF>EF,則邊EF的長=.17發布:2025/5/25 0:0:2組卷:320引用:4難度:0.2 -
2.如圖,OC為∠AOB的角平分線,∠AOB=α(0°<α<180°),點D為射線OA上一點,點M,N為射線OB上兩個動點且滿足MN=OD,線段ON的垂直平分線交OC于點P,交OB于點Q,連接DP,MP.
(1)如圖1,若α=90°時,線段DP與線段MP的數量關系為 .
(2)如圖2,若α為任意角度時,(1)中的結論是否變化,請說明理由;
(3)如圖3,若α=60°時,連接DM,請直接寫出的最小值.DMON發布:2025/5/25 1:0:1組卷:92引用:2難度:0.1 -
3.在△ABC中,AB=BC,∠B=45°,AD為BC邊上的高,M為線段AB上一動點.
(1)如圖1,連接CM交AD于Q,若∠ACM=45°,AB=.求線段DQ的長度;2
(2)如圖2,點M,N在線段AB上,且AM=BN,連接CM,CN分別交線段AD于點Q、P,若點P為線段CN的中點,求證:AQ+CD=AB;2
(3)如圖3,若AD=4,當點M在運動過程中,射線DB上有一點G,滿足BM=10DG,AG+2MG的最小值.55發布:2025/5/24 23:0:1組卷:102引用:1難度:0.1