如圖,在半徑為4m的四分之一圓(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),設矩形的邊長AB=x m,圓柱的體積為Vm3.
(1)求出體積V關于x的函數關系式,并指出定義域;
(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大?最大體積是多少?
【考點】利用導數研究函數的最值;根據實際問題選擇函數類型.
【答案】(1),定義域為{x|0<x<4};
(2)當m時,圓柱形罐子的體積V最大,最大體積是m3.
V
=
16
x
-
x
3
4
π
(2)當
x
=
4
3
3
32
3
9
π
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/12/29 8:0:12組卷:39引用:12難度:0.5
相似題
-
1.已知函數
,若關于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數k的取值范圍( )f(kex)+f(-12x)>2A.( ,+∞)12eB.( ,12e)2e2C.( ,12e]2e2D.( ,1]2e2發布:2025/1/5 18:30:5組卷:297引用:2難度:0.4 -
2.已知函數f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發布:2024/12/29 13:0:1組卷:190引用:2難度:0.1 -
3.已知函數f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發布:2024/12/29 12:30:1組卷:48引用:4難度:0.5