試卷征集
          加入會員
          操作視頻

          創意機器??賽——撿硬幣。?賽規則如下:
          (1)在?賽場地上放置了n 個硬幣,每個硬幣的位置均不相同,各位置坐標(x,y)保存在?本?件中(如圖所示,放置了5個硬幣,?本中坐標按x,y 升序排列);
          (2)機器?在兩個硬幣位置間?直線,從起點(0,0)出發,按硬幣x 坐標從?到?去撿,若 x 坐標相同,則按 y 坐標從?到?撿;取?其中的n-1個硬幣,總??距離最短的機器?將獲得?賽的冠軍。
          例:如圖a 所示,p2直接到p4則代表p3處硬幣未取。

          完成該項?分以下?個步驟:
          (1)讀取坐標數據。
          從?本?件中讀取硬幣的坐標(x、y),分別存儲在列表x 和y 中。請在橫線處填?合適的代碼。

          (2)編寫函數,計算兩點間的距離。請在橫線處填?合適的代碼。

          (3)設計算法與程序實現。
          機器?取?n-1個硬幣經過的最短距離公式可以描述為:
          其中:為機器?取?n-1個硬幣?的最短距離;
          為機器?取?n 個硬幣經過的距離之和;
          為機器?未取第i 個硬幣少?的路程;
          Max 為求中的最?值。
          根據上述算法編寫的Python 程序如下,請在橫線處填?合適的代碼。

          (4)調試和異常處理。
          當最后一個硬幣未取為最短距離時,上述程序運?結果不正確。加框處代碼有誤,請修改。

          【考點】事件處理過程
          【答案】(1)y.jye.ai(int(data[1]))
          (2)sqrt((x2-x1)**2+(y2-y1)**2)或sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))或((x2-x1)**2+(y2-y1)**2)**0.5
          (3)①d1+d2-d3 ②long-maxd
          (4)maxd=dist(x[n-2],y[n-2],x[n-1],y[n-1])
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:1引用:1難度:0.3
          相似題
          • 1.漢諾塔問題如圖所示,現要求將塔座A上的所有圓盤移到塔座B上,并仍按同樣順序疊放。移動圓盤時,需遵守漢諾塔問題的移動規則。由此,可設計出解漢諾塔問題的遞歸算法為( ?。?/h2>

            發布:2024/11/14 8:0:1組卷:1難度:0.2
          • 2.有如下Python程序段:

            輸入s值為“13Ka5iSh79“,執行該程序段后,輸出的結果是(  )

            發布:2025/1/2 9:0:7組卷:1引用:2難度:0.4
          • 3.輸出列表a中的元素的最大值。不要更改程序結構,將題中的①②③填入正確的語句。

            (1)序號①答案為:
             
            。
            A.range(1,5)
            B.range(5)
            C.a
            D.a[4]
            (2)序號②答案為:
             
            。
            A.maxx+=1
            B.k=maxx
            C.maxx=k
            D.k+=1
            (3)序號③答案為:
             
            。
            A.k
            B.maxx
            C.a[4]
            D.a

            發布:2025/1/2 10:0:2組卷:2引用:2難度:0.4
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正