現有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.如圖1,若點O與點A重合,容易得到線段OM與ON的關系,

(1)觀察猜想:如圖2,若點O在正方形的中心(即兩條對角線的交點),OM與ON的數量關系是OM=ONOM=ON;
(2)探究證明;如圖3,若點O在正方形的內部(含邊界),且OM=ON,請判斷三角板移動過程中所有滿足條件的點O可組成什么圖形,并說明理由;
(3)拓展延伸:若點O在正方形的外部,且OM=ON,請你在圖4中畫出滿足條件的一種情況,并就“三角板在各種情況下(含外部)移動,所有滿足條件的點O所組成的圖形”,寫出正確的結論(不必說明理由).
【考點】四邊形綜合題.
【答案】OM=ON
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:443引用:5難度:0.1
相似題
-
1.如圖,△BAC中,BA=2BC,直線l垂直平分AC,△BCA與△DAC關于直線l對稱,AB,CD的交點N在l上,將△BAC繞點A逆時針旋轉,使得點B落在AD延長線上,得到△EAF,取AF中點M,連接DM,CM,DB.
(1)求證:DB∥AC;
(2)求證:D,M,C三點共線;
(3)若DB=AD+AC,AD=2,求S四邊形ACBD的值.發布:2025/6/6 5:30:2組卷:58引用:1難度:0.1 -
2.問題情境:
如圖1,點E為正方形ABCD內一點,∠AEB=90°,將Rt△ABE繞點B按順時針方向旋轉90°,得到△CBE'(點A的對應點為點C).延長AE交CE'于點F,連接DE,
猜想證明:
(1)試判斷四邊形BE'FE的形狀,并說明理由;
(2)如圖2,若DA=DE、請猜想線段CF與FE'的數最關系并加以證明,解決問題;
(3)如圖1,若△ADE的面積為72,BC=15,請直接寫出CF的長.發布:2025/6/6 5:30:2組卷:523引用:12難度:0.3 -
3.在矩形ABCD中,AD=6,CD=8,點E在CD上,且DE=2.
(1)如圖1,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,求證:△ADE≌△ECF;
(2)如圖2,點P在矩形ABCD的邊AD上(點P不與A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF,若∠EFP=30°,試判斷四邊形ABFP的形狀,并說明理由;
(3)如圖3,若EF交AB于點F,EF⊥PE,且△PEF的面積為8,求線段PD的長.發布:2025/6/6 5:30:2組卷:9引用:1難度:0.1