如圖1,在矩形ABCD中,AB=3,AD=4.P為對角線BD上的點,過點P作PM⊥AD于點M,PN⊥BD交BC于點N,Q是M關于PD的對稱點,連結PQ,QN.
(1)如圖2,當Q落在BC上時,求證:BQ=MD.
(2)是否存在△PNQ為等腰三角形的情況?若存在,求MP的長;若不存在,請說明理由.
(3)若射線MQ交射線DC于點F,當PQ⊥QN時,求DF:FC的值.

【考點】四邊形綜合題.
【答案】(1)見解答;(2)MP=2或或;(3)8.
5
3
25
19
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/24 6:0:2組卷:366引用:3難度:0.1
相似題
-
1.如圖,四邊形ABCD中,∠A=∠B=90°,AD=2,AB=5,BC=3.
(1)如圖①,P為AB上的一個動點,以PD,PC為邊作?PCQD.
①請問四邊形PCQD能否成為矩形?若能,求出AP的長;若不能,請說明理由.
②填空:當AP=時,四邊形PCQD為菱形;
③填空:當AP=時,四邊形PCQD有四條對稱軸.
(2)如圖②,若P為AB上的一點,以PD,PC為邊作?PCQD,請問對角線PQ的長是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.發布:2025/5/24 11:0:1組卷:701引用:3難度:0.2 -
2.(1)證明推斷:如圖(1),在正方形ABCD中,點E,Q分別在邊BC,AB上,DQ⊥AE于點O,點G,F分別在邊CD,AB上,GF⊥AE.求證:AE=FG;
(2)類比探究:如圖(2),在矩形ABCD中,=k(k為常數).將矩形ABCD沿GF折疊,使點A落在BC邊上的點E處,得到四邊形FEPG,EP交CD于點H,連接AE交GF于點O.試探究GF與AE之間的數量關系,并說明理由;BCAB
(3)拓展應用:在(2)的條件下,連接CP,當時k=,若tan∠CGP=34,GF=243,求CP的長.5發布:2025/5/24 10:30:2組卷:3153引用:13難度:0.4 -
3.數學學習總是循序漸進、不斷延伸拓展的,數學知識往往起源于人們為了解決某些問題,通過觀察、測量、思考、猜想出的一些結論.但是所猜想的結論不一定都是正確的.人們從已有的知識出發,經過推理、論證后,如果所猜想的結論在邏輯上沒有矛盾,就可以作為新的推理的前提,數學中稱之為定理.
(1)推理證明:
在八年級學習等腰三角形和直角三角形時,借助工具測量就能夠發現:“直角三角形斜邊上的中線等于斜邊的一半”,當時并未說明這個結論的正確性.九年級學習了矩形的判定和性質之后,就可以解決這個問題了.如圖1,在Rt△ABC中,若CD是斜邊AB上的中線,則,請你用矩形的性質證明這個結論的正確性.CD=12AB
(2)遷移運用:利用上述結論解決下列問題:
①如圖2,在線段BD異側以BD為斜邊分別構造兩個直角三角形△ABD與△CBD,E、F分別是BD、AC的中點,判斷EF與AC的位置關系并說明理由;
②如圖3,?ABCD對角線AC、BD相交于點O,分別以AC、BD為斜邊且在同側分別構造兩個直角三角形△ACE與△BDE,求證:?ABCD是矩形.發布:2025/5/24 10:30:2組卷:291引用:3難度:0.5