試卷征集
          加入會員
          操作視頻

          為了拓展學生的知識面,提高學生對航空航天科技的興趣,培養學生良好的科學素養,某校組織學生參加航空航天科普知識答題競賽,每位參賽學生答題若干次,答題賦分方法如下:第1次答題,答對得20分,答錯得10分:從第2次答題開始,答對則獲得上一次答題得分的兩倍,答錯得10分.學生甲參加答題競賽,每次答對的概率為
          3
          4
          ,各次答題結果互不影響.
          (1)求甲前3次答題得分之和為40分的概率;
          (2)記甲第i次答題所得分數
          X
          i
          i
          N
          *
          的數學期望為E(xi).
          ①寫出E(Xi-1)與E(xi)滿足的等量關系式(直接寫出結果,不必證明):
          ②若E(xi)>100,求i的最小值.

          【答案】(1)
          9
          64

          (2)①
          E
          x
          i
          =
          3
          2
          E
          x
          i
          -
          1
          +
          5
          2
          i
          N
          *
          i
          2
          ,且
          E
          x
          1
          =
          35
          2
          ;②5.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:670引用:7難度:0.6
          相似題
          • 1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間(30,150]內,其頻率分布直方圖如圖.
            (Ⅰ)求獲得復賽資格的人數;
            (Ⅱ)從初賽得分在區間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區間(110,130]與(130,150]各抽取多少人?
            (Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區間(130,150]中參加全市座談交流的人數,求X的分布列及數學期望E(X).

            發布:2024/12/29 13:30:1組卷:134引用:7難度:0.5
          • 2.設離散型隨機變量X的分布列如表:
            X 1 2 3 4 5
            P m 0.1 0.2 n 0.3
            若離散型隨機變量Y=-3X+1,且E(X)=3,則(  )

            發布:2024/12/29 13:0:1組卷:199引用:6難度:0.5
          • 3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數,則E(X)為(  )

            發布:2024/12/29 13:30:1組卷:139引用:6難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正