方程組xy+yz+zx=1(1) yz+zt+ty=1(2) zt+tx+xz=1(3) tx+xy+yt=1(4)
的解是x1=33 y1=33 z1=33 t1=33
,x2=-33 y2=-33 z2=-33 t2=-33
x1=33 y1=33 z1=33 t1=33
,x2=-33 y2=-33 z2=-33 t2=-33
.
xy + yz + zx = 1 ( 1 ) |
yz + zt + ty = 1 ( 2 ) |
zt + tx + xz = 1 ( 3 ) |
tx + xy + yt = 1 ( 4 ) |
x 1 = 3 3 |
y 1 = 3 3 |
z 1 = 3 3 |
t 1 = 3 3 |
,
x 2 = - 3 3 |
y 2 = - 3 3 |
z 2 = - 3 3 |
t 2 = - 3 3 |
x 1 = 3 3 |
y 1 = 3 3 |
z 1 = 3 3 |
t 1 = 3 3 |
,
x 2 = - 3 3 |
y 2 = - 3 3 |
z 2 = - 3 3 |
t 2 = - 3 3 |
【考點(diǎn)】高次方程.
【答案】
x 1 = 3 3 |
y 1 = 3 3 |
z 1 = 3 3 |
t 1 = 3 3 |
,
x 2 = - 3 3 |
y 2 = - 3 3 |
z 2 = - 3 3 |
t 2 = - 3 3 |
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/26 21:30:2組卷:150引用:1難度:0.3
相似題
-
1.關(guān)于x、y、z的方程組
有實(shí)數(shù)解(x,y,z),求正實(shí)數(shù)a的最小值.3x+2y+z=axy+2yz+3zx=6發(fā)布:2025/5/26 20:30:2組卷:203引用:1難度:0.3 -
2.設(shè)a≠0,b≠0,2a+9b≠0,a+2b≠0,則關(guān)于x,y的方程組
的解是( )xy3ax+2by+3b=-12a2xy2ax+3by+2b=13bA. x=12y=1B. x=12y=-32C. x=5b2(2a+9b)y=-32D. 或x=12y=1x=5b2(2a+9b)y=-32發(fā)布:2025/5/26 20:30:2組卷:121引用:1難度:0.3 -
3.如果x、y是非零實(shí)數(shù),使得
,那么x+y等于( )|x|+y=3|x|y+x3=0A.3 B. 13C. 1-132D. 4-13發(fā)布:2025/5/28 9:30:2組卷:617引用:10難度:0.9
相關(guān)試卷