如圖1,在Rt△ABC中,∠C=90°,AC=8,BC=6,BD平分△ABC的外角∠ABM,AD⊥BD于點D,過B點作BE∥AC交AD于點E.點P在線段AB上(不與端點A點重合),點Q在射線CB上,且CQ=2AP=2t,連結PQ,作P點關于直線BE的對稱點N,連結PN,NQ.
(1)求證:∠BAD=∠DBE.
(2)當Q在線段BC上時,PN與AD交于點H,若AH=EH,求HP的長.
(3)①當△PNQ的邊與△ABD的AD或BD邊平行時,求所有滿足條件的t的值.
②當點D在△PNQ內部時,請直接寫出滿足條件的t的取值范圍.
【考點】幾何變換綜合題.
【答案】(1)見解析;
(2);
(3)①或或;
②.
(2)
15
8
(3)①
40
11
16
3
20
3
②
15
-
65
4
<
t
<
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:231引用:1難度:0.2
相似題
-
1.觀察猜想
(1)如圖1,在等邊△ABC與等邊△ADE中,△ADE繞點A順時針旋轉α度(0<α<360),則線段BD與線段CE的數量關系是 ,直線BD與直線CE相交所成較小角的度數是 ;
類比探究
(2)如圖2,在△ABC與△ADE中,∠BCA=∠DEA=90°,CB=CA,ED=EA,其他條件不變,(1)中的兩個結論是否成立?若成立,請說明理由;若不成立,請寫出新的結論并證明;
拓展應用
(3)如圖3,在△ABC與△ADE中,∠ABC=∠ADE=90°,∠BAC=∠DAE=60°,AB=3AD=3,當B,D,E三點共線時,直接寫出CE的值.3發布:2025/5/24 20:0:2組卷:208引用:1難度:0.1 -
2.已知:如圖,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.點P從點B出發,沿BA方向勻速運動.速度為1cm/s;同時,點Q從點D出發,沿DB方向勻速運動,速度為1cm/s.過點Q作QM∥BE,交AD于點H,交DE于點M,過點Q作QN∥BC,交CD于點N.分別連接PQ,PM,設運動時間為t(s)(0<t<8).
解答下列各題:
(1)當PQ⊥BD時,求t的值;
(2)設五邊形PMDNQ的面積為S(cm2),求S與t之間的函數關系式.發布:2025/5/24 22:0:1組卷:27引用:1難度:0.4 -
3.如圖1,△ABC中,∠ABC=45°,AH⊥BC于點H,點D在AH上,且DH=CH,連結BD.
(1)求證:BD=AC;
(2)將△BHD繞點H旋轉,得到△EHF(點B,D分別與點E,F對應),連接AE.
①如圖2,當點F落在AC上時(F不與C重合),若CF=1,tanC=3,求AE的長;
②如圖3,當△EHF是由△BHD繞點H逆時針旋轉30°得到時,設射線CF與AE相交于點G,連接GH,試探究線段GH與EF之間滿足的數量關系,并說明理由.發布:2025/5/24 20:30:2組卷:60引用:1難度:0.1