如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx-32與x軸交于A(-1,0),B(3,0)兩點(diǎn),其頂點(diǎn)為M.直線y=kx-k與拋物線相交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左側(cè)).
(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)M的坐標(biāo);
(2)當(dāng)線段EF被拋物線的對(duì)稱軸分成長度比為1:4的兩部分時(shí),求k的值;
(3)連接EM,F(xiàn)M,試探究∠EMF的大小是否為定值.若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.

y
=
a
x
2
+
bx
-
3
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2-x-,點(diǎn)M(1,-2);
(2);
(3)∠EMF=90°為定值,理由見解答.
1
2
3
2
(2)
±
3
2
(3)∠EMF=90°為定值,理由見解答.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:607引用:1難度:0.3
相似題
-
1.如圖:直線y=kx+m交y軸于點(diǎn)D,交x軸于點(diǎn)C(5,0),交拋物線y=ax2+bx+8于點(diǎn)A(-3,4),點(diǎn)E,點(diǎn)B(2,4)在拋物線上,連接AB,BC,BD.
(1)求拋物線的解析式;
(2)點(diǎn)Q從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿折線A-B-C做勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,△QBD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,若∠DQB+∠BCO=90°,請(qǐng)直接寫出此時(shí)t的值.發(fā)布:2025/5/25 7:0:2組卷:168引用:1難度:0.4 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(ac≠0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.若線段OA、OB、OC的長滿足OC2=OA?OB,則這樣的拋物線稱為“黃金”拋物線.如圖,拋物線y=ax2+bx+2(a≠0)為“黃金”拋物線,其與x軸交點(diǎn)為A,B(其中B在A的右側(cè)),與y軸交于點(diǎn)C,且OA=4OB.
(1)求拋物線的解析式;
(2)若P為AC上方拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PD⊥AC,垂足為D.
①求PD的最大值;
②連接PC,當(dāng)△PCD與△ACO相似時(shí),求點(diǎn)P的坐標(biāo).發(fā)布:2025/5/25 7:0:2組卷:1125引用:11難度:0.1 -
3.如圖,拋物線y=ax2+bx+2經(jīng)過A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及直線BC解析式;
(2)D是直線BC上方拋物線上一動(dòng)點(diǎn),連接AD交線段BC于點(diǎn)E,當(dāng)的值最大時(shí),求出此時(shí)D坐標(biāo)及最大值;DEAE
(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,得到BF,與拋物線交于另一點(diǎn)F,直接寫出F坐標(biāo)及BF的長.發(fā)布:2025/5/25 7:0:2組卷:171引用:2難度:0.1