已知,如圖,拋物線L1:y=-x2+mx+3與x軸交于A、B兩點,點A在B左側(cè),與y軸交于點C.

(1)若拋物線L1的對稱軸為直線x=1時求拋物線L1的表達式及點A、B的坐標(biāo);
(2)在(1)的條件下,點D為拋物線L1在第一象限上的動點,連接OD,與BC相交于點E,若△BOE與△ABC相似,求點D的坐標(biāo);
(3)把拋物線L1沿著直線y=3翻折,得到拋物線L2;
①拋物線L2的表達式為 y=-x2+(12-m)x+6m-33y=-x2+(12-m)x+6m-33;(直接寫出結(jié)果)
②設(shè)M(1,0),N(2,0),若拋物線L2與線段MN(包括端點)有唯一公共點,直接寫出m的取值范圍.
L
1
:
y
=
-
x
2
+
mx
+
3
【考點】二次函數(shù)綜合題.
【答案】y=-x2+(12-m)x+6m-33
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/21 12:0:1組卷:57引用:2難度:0.5
相似題
-
1.如圖,拋物線y=-
x2+bx+c與x軸交于A(-1,0),B(4,0),與y軸交于點C.連接AC,BC,點P在拋物線上運動.12
(1)求拋物線的表達式;
(2)若點P在第四象限,點Q在PA的延長線上,當(dāng)∠CAQ=∠CBA+45°時,求點P的坐標(biāo).發(fā)布:2025/6/7 20:0:2組卷:80引用:1難度:0.2 -
2.在平面直角坐標(biāo)系xOy中,一次函數(shù)
的圖象經(jīng)過點B(4,0),交y軸于點A,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,且對稱軸為直線x=-1.y=-34x+m
(1)請求出m,b,c的值;
(2)點C為拋物線的頂點,在y軸上是否存在點P,使得以點P、O、C為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標(biāo),不必說明理由;若不存在,請說明理由;
(3)將直線AB向下平移a個單位,使得直線AB與拋物線有且只有一個交點,求a的值;
(4)點D在y軸上,且位于點A下方,點M在二次函數(shù)的圖象上,點N在一次函數(shù)的圖象上,使得以點A、D、M、N為頂點的四邊形是菱形,求點M的坐標(biāo).發(fā)布:2025/6/8 1:0:1組卷:104引用:2難度:0.1 -
3.如圖①,定義:直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點.將△AOB繞著點O逆時針旋轉(zhuǎn)90°得到△COD,過點A,B,D的拋物線P叫作直線l的“糾纏拋物線”,反之,直線l叫做拋物線P的“糾纏直線”,兩線“互為糾纏線”.
(1)已知直線l:y=-2x+2,則它的糾纏拋物線P的函數(shù)解析式是 .
(2)判斷y=-2x+2k與是否“互為糾纏線”并說明理由.y=-1kx2-x+2k
(3)如圖②,已知直線l:y=-2x+4,它的糾纏拋物線P的對稱軸與CD相交于點E.點F在直線l上.點Q在拋物線P的對稱軸上,當(dāng)以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形時,直接寫出點Q的坐標(biāo).發(fā)布:2025/6/7 21:0:1組卷:47引用:1難度:0.3