如圖,在平面直角坐標系中,拋物線y=ax2+x+3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C;經過點A的直線與y軸正半軸交于點E,與拋物線的另一個交點為D(4,3),其中OA=2.
(1)求此拋物線及直線的解析式;
(2)若點P是直線上方拋物線上的一個動點,當△AEP的面積最大時,求點P的坐標;
(3)若點Q是y軸上的點,且∠ADQ=45°,求點Q的坐標.
【考點】二次函數綜合題.
【答案】(1)y=-x2+x+3,y=x+1;
(2)(1,);
(3)Q點坐標為(0,-9)或(0,).
1
4
1
2
(2)(1,
15
4
(3)Q點坐標為(0,-9)或(0,
13
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:146引用:1難度:0.2
相似題
-
1.如圖,過點
的拋物線y=ax2+bx的對稱軸是直線x=2,點B是拋物線與x軸的一個交點,點C在y軸上,點D是拋物線的頂點,設點P在直線OA下方且在拋物線y=ax2+bx上,過點P作y軸的平行線交OA于點Q.A(5,154)
(1)求a、b的值;
(2)求PQ的最大值;
(3)當△BCD是直角三角形時,求△OBC的面積.發布:2025/5/22 16:30:1組卷:269引用:8難度:0.1 -
2.如圖,在平面直角坐標系中,拋物線y=x2-ax經過點(5,5),頂點為A,連結OA.
(1)求a的值;
(2)求A的坐標;
(3)P為x軸上的動點,當tan∠OPA=時,請直接寫出OP的長.12發布:2025/5/22 15:0:2組卷:201引用:1難度:0.4 -
3.如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx-5與x軸交于A(-1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數表達式;
(2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別相交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標;
(3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.發布:2025/5/22 16:0:1組卷:1478引用:6難度:0.3