當(dāng)前位置:
試題詳情
已知二次函數(shù)y=ax2+bx+c(a>0).
(1)若a=1,b=3,且該二次函數(shù)的圖象過點(1,1),求c的值;
(2)如圖所示,在平面直角坐標(biāo)系xOy中,該二次函數(shù)的圖象與x軸相交于不同的兩點A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且該二次函數(shù)的圖象的頂點在矩形ABFE的邊EF上,其對稱軸與x軸、BE分別交于點M、N,BE與y軸相交于點P,且滿足tan∠ABE=34.
①求關(guān)于x的一元二次方程ax2+bx+c=0的根的判別式的值;
②若NP=2BP,令T=1a2+165c,求T的最小值.
閱讀材料:十六世紀(jì)的法國數(shù)學(xué)家弗朗索瓦?韋達(dá)發(fā)現(xiàn)了一元二次方程的根與系數(shù)之間的關(guān)系,可表述為“當(dāng)判別式Δ≥0時,關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根x1、x2有如下關(guān)系:x1+x2=-ba,x1x2=ca”.此關(guān)系通常被稱為“韋達(dá)定理”.
3
4
1
a
2
+
16
5
-
b
a
c
a
【考點】二次函數(shù)綜合題.
【答案】(1)c=-3;
(2)①9;
②-4.
(2)①9;
②-4.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/22 21:30:2組卷:1313引用:2難度:0.1
相似題
-
1.如圖,已知過坐標(biāo)原點的拋物線經(jīng)過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)P是拋物線在第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/23 2:30:1組卷:44引用:1難度:0.1 -
2.在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
(1)求拋物線的解析式;
(2)當(dāng)點F在第一象限運(yùn)動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當(dāng)S取最大值時,求點F的坐標(biāo);
(3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標(biāo).發(fā)布:2025/5/23 3:0:1組卷:458引用:3難度:0.1 -
3.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經(jīng)過B、C兩點,與x軸的另一個交點為A.
(1)如圖1,求b、c的值;
(2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設(shè)點P的橫坐標(biāo)為t,△ADC的面積為S,求S與t的函數(shù)關(guān)系式;
(3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為,求E點坐標(biāo).54發(fā)布:2025/5/23 3:0:1組卷:205引用:1難度:0.1