已知f(x)=sin(x+π3)cosx+12sin(2x+π3)-34.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若af(12x-π6)-f(12x+π12)≥2對任意的x∈[π4,π3]恒成立,求a的取值范圍.
f
(
x
)
=
sin
(
x
+
π
3
)
cosx
+
1
2
sin
(
2
x
+
π
3
)
-
3
4
af
(
1
2
x
-
π
6
)
-
f
(
1
2
x
+
π
12
)
≥
2
x
∈
[
π
4
,
π
3
]
【答案】(1),k∈Z;
(2).
[
-
5
12
π
+
kπ
,
π
12
+
kπ
]
(2)
a
≥
2
2
+
1
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1012引用:5難度:0.3
相似題
-
1.已知tanα=1,tanβ=2,則tan(α-β)=( )
A. -13B. 13C.3 D.-3 發(fā)布:2025/1/7 22:30:4組卷:13引用:2難度:0.7 -
2.已知α,β,γ∈
,sinα+sinγ=sinβ,cosβ+cosγ=cosα,則下列說法正確的是( )(0,π2)A. cos(β-α)=12B. cos(β-α)=-12C. β-α=π3D. β-α=-π3發(fā)布:2024/12/29 9:30:1組卷:102引用:6難度:0.6 -
3.已知α∈(
,π),sinα=π2,則tan(α+35)=( )π4A. -17B.7 C. 17D.-7 發(fā)布:2024/12/29 12:30:1組卷:354引用:16難度:0.7