試卷征集
          加入會員
          操作視頻

          已知拋物線C1:y=(x+1)2-4和C2:y=x2
          (1)如何將拋物線C1平移得到拋物線C2
          (2)如圖1,拋物線C1分別交x軸于A、B兩點(點A在點B的左邊).交y軸負半軸于點C,點P為第二象限內拋物線C1上的一動點,設△PAC的面積為S1,△PBC的面積為S2,若3S1=S2,求點P的橫坐標;
          (3)如圖2,過點(-2,3)的直線交拋物線C2于E,F兩點(點E在點F的右邊),過點E的另一條直線y=-4x+m與拋物線C2的另一個交點為P,連PF,直線l⊥y軸且過點(0,5),直線l與PE、PF分別交于點M、N點(點M在點N的右邊),求線段MN的長.(用含m的式子表達)

          【考點】二次函數綜合題
          【答案】(1)將拋物線C1向右平移1個單位長度,再向上平移4個單位長度即可得到拋物線C2
          (2)-
          7
          2

          (3)
          m
          +
          3
          4
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:680引用:3難度:0.1
          相似題
          • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
            (1)求該拋物線的解析式;
            (2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
            (3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
            ①m取何值時,過點P、M、N、F的平面圖形不是梯形?
            ②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.

            發布:2025/1/2 8:0:1組卷:83引用:1難度:0.5
          • 2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為

            發布:2024/12/23 17:30:9組卷:3914引用:38難度:0.4
          • 3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
            5
            ,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-4
            5
            ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是(  )

            發布:2024/12/26 1:30:3組卷:2686引用:7難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正