已知雙曲線x2a2-y2b2=1(a>0,b>0)的右頂點為A,直線y=x與雙曲線相交,從A引雙曲線的兩條漸近線的平行線,與直線y=x分別交于點Q、R.若O為坐標原點,|OQ?OR|=43ab,則雙曲線的離心率為( )
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
|
OQ
?
OR
|
=
4
3
ab
6 2 | 5 2 5 | 5 | 6 6 2 |
【考點】求雙曲線的離心率.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 14:0:0組卷:131引用:3難度:0.4
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點,P為x2+y2=c2與雙曲線C1的交點,且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( )13A. 102B. 173C. 2D. 3發布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.設a>1,則雙曲線
的離心率e的取值范圍是( )x2a2-y2(a+1)2=1A. (2,2)B. (2,5)C.(2,5) D. (2,5)發布:2024/12/29 0:0:2組卷:843引用:18難度:0.7 -
3.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( )32A. 32B. 52C.2 D. 72發布:2025/1/5 18:30:5組卷:228引用:3難度:0.7