如圖,F1,F2分別是雙曲線x2a2-y2b2=1(a>0,b>0)的左、右焦點,點P是雙曲線與圓x2+y2=a2+b2在第二象限的一個交點,點Q在雙曲線上,且F1P=12F2Q,則雙曲線的離心率為( )
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
F
1
P
=
1
2
F
2
Q
10 2 | 2 | 3 | 17 3 |
【考點】求雙曲線的離心率.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/12/3 7:0:1組卷:319引用:5難度:0.5
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點,P為x2+y2=c2與雙曲線C1的交點,且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( )13A. 102B. 173C. 2D. 3發布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( )32A. 32B. 52C.2 D. 72發布:2025/1/5 18:30:5組卷:228引用:3難度:0.7 -
3.設a>1,則雙曲線
的離心率e的取值范圍是( )x2a2-y2(a+1)2=1A. (2,2)B. (2,5)C.(2,5) D. (2,5)發布:2024/12/29 0:0:2組卷:838引用:18難度:0.7