【了解概念】
定義提出:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
【理解運用】
(1)如圖1,在3×3的正方形網格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,線段AB、BC的端點均在格點上,在圖1的方格紙中畫出一個等鄰邊四邊形ABCD,要求:點D在格點上;
(2)如圖2,在等鄰邊四邊形ABCD中,AB=AD=4,∠A=60°,∠ABC=90°,BC=3√3,求CD的長;
【拓展提升】
(3)如圖3,在平面直角坐標系中,矩形OABC的頂點A、C分別在x、y軸正半軸上,已知OC=4,OA=6,D是OA的中點.在矩形OABC內或邊上,是否存在點E,使四邊形OCED為面積最大的“等鄰邊四邊形”,若存在,請求出四邊形OCED的最大面積及此時點E的坐標;若不存在,請說明理由.

BC
=
3
√
3
【考點】四邊形綜合題.
【答案】(1)作圖見解答過程(答案不唯一);
(2);
(3)存在點E,使四邊形OCED為面積最大的“等鄰邊四邊形”,此時四邊形OCED的面積最大值為,點E的坐標為(,4).
(2)
√
7
(3)存在點E,使四邊形OCED為面積最大的“等鄰邊四邊形”,此時四邊形OCED的面積最大值為
43
3
25
6
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/23 5:30:3組卷:966引用:14難度:0.3
相似題
-
1.如圖,正方形ABCD的邊長為4cm,P點從D出發以每秒鐘1cm的速度沿D→C→B→A的路線勻速運動(點P不與點D和點A重合),設點P運動的路程為x cm.
(1)求△APD的面積y cm2與x cm之間的函數關系式;
(2)畫出這個函數的圖象;
(3)根據圖象寫出函數值y隨自變量x的變化情況.發布:2025/6/4 5:30:2組卷:14引用:1難度:0.5 -
2.如圖,在Rt△ABC中,∠A=30°,∠C=90°,AB=4
cm,∠ABC的平分線BD交AC于點D.動點P從點D出發,沿DA方向勻速向點A運動,同時動點Q從點B出發,沿BD方向勻速向點D運動.已知點P、Q的運動速度都是1cm/s,當其中一個點到達終點時,另一個點也停止運動,設運動時間為t(s)(0<t<4),解答下列問題:√3
(1)求BD長;
(2)在運動過程中,是否存在某一時刻t,使點D在線段PQ的垂直平分線上?若存在,求出t值;若不存在,請說明理由;
(3)當t=時,求四邊形PABQ的面積.52發布:2025/6/4 5:0:1組卷:290引用:4難度:0.4 -
3.閱讀下列材料:
利用完全平方公式,將多項式x2+bx+c變形為(x+k)2+h的形式,然后由(x+k)2≥0就可求出多項式x2+bx+c的最小值.
例題:求x2-14x+50的最小值.
解:x2-14x+50=x2-2x?7+72-72+50=(x-7)2+1.
因為不論x取何值,(x-7)2總是非負數,即(x-7)2≥0.所以(x-7)2+1≥1,
所以當x=7時,x2-14x+50有最小值,最小值是1.
根據上述材料,解答下列問題:
(1)填空:x2-16x+=(x-)2;
(2)將x2+32x-2變形為(x+k)2+h的形式,并求出x2+32x-2的最小值;
(3)如圖1所示的長方形邊長分別是5a、a+3,面積為S1;如圖2所示的長方形邊長分別是2a+3、3a+2,面積為S2,試比較S1與S2的大小,并說明理由.發布:2025/6/4 5:0:1組卷:96引用:2難度:0.3