某校為舉辦甲、乙兩項不同活動,分別設(shè)計了相應(yīng)的活動方案;方案一、方案二.為了解該校學生對活動方案是否支持,對學生進行簡單隨機抽樣,獲得數(shù)據(jù)如表:
男生 | 女生 | |||
支持 | 不支持 | 支持 | 不支持 | |
方案一 | 200人 | 400人 | 300人 | 100人 |
方案二 | 350人 | 250人 | 150人 | 250人 |
(Ⅰ)分別估計該校男生支持方案一的概率、該校女生支持方案一的概率;
(Ⅱ)從該校全體男生中隨機抽取2人,全體女生中隨機抽取1人,估計這3人中恰有2人支持方案一的概率;
(Ⅲ)將該校學生支持方案二的概率估計值記為p0.假設(shè)該校一年級有500名男生和300名女生,除一年級外其他年級學生支持方案二的概率估計值記為p1.試比較p0與p1的大?。ńY(jié)論不要求證明)
【考點】相互獨立事件和相互獨立事件的概率乘法公式.
【答案】(Ⅰ)“該校男生支持方案一”為,“該校女生支持方案一”為;
(Ⅱ);
(Ⅲ)p0>p1.
1
3
3
4
(Ⅱ)
13
36
(Ⅲ)p0>p1.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:3042引用:7難度:0.7
相似題
-
1.甲、乙兩人進行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12A. P(2)=18B. P(3)=1132C. P(n)=12(1-Cn2n22n)D.P(n)的最大值為 14發(fā)布:2024/12/29 12:0:2組卷:254引用:6難度:0.6 -
2.小王同學進行投籃練習,若他第1球投進,則第2球投進的概率為
;若他第1球投不進,則第2球投進的概率為23.若他第1球投進概率為13,他第2球投進的概率為( ?。?/h2>23A. 59B. 23C. 79D. 83發(fā)布:2024/12/29 12:0:2組卷:305引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻血活動,假設(shè)每個獻血者到達采血站是隨機的,并且每個獻血者到達采血站和其他的獻血者到達采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻血者到達采血站獻血,用隨機模擬的方法來估計一下,這10位獻血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
相關(guān)試卷