已知函數y=f(x)若在定義域內存在x0使得f(-x0)=-f(x0)成立,則稱x0為函數y=f(x)局部對稱點.
(1)若a,b∈R且a≠0,證明:f(x)=ax2+bx-a必有局部對稱點;
(2)若函數f(x)=2x+c在定義域內[-1,2]內有局部對稱點,求實數c的取值范圍.
【考點】函數與方程的綜合運用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:38引用:4難度:0.3
相似題
-
1.若{x|x2+px+q=0}={1,3},則p+q的值為( )
A.-3 B.3 C.-1 D.7 發布:2024/12/15 2:0:2組卷:17引用:3難度:0.8 -
2.已知直線y=-x+2分別與函數
和y=ln(2x)的圖象交于點A(x1,y1),B(x2,y2),則( )y=12exA. >2eex1+ex2B.x1x2> e4C. >0lnx1x1+x2lnx2D. ex1+ln(2x2)>2發布:2024/12/29 11:0:2組卷:245引用:10難度:0.6 -
3.已知函數f(x)=(x-1)|x-a|+4有三個不同的零點,則實數a的取值范圍是 .
發布:2024/12/29 6:30:1組卷:107引用:2難度:0.5