如圖,已知∠ABC=180°-∠A,BD⊥CD于點D,EF⊥CD于點F.
(1)求證:AD∥BC;
(2)若∠1=40°,求∠2的度數(shù).
【考點】平行線的判定與性質(zhì).
【答案】(1)答案見解答;(2)∠2的度數(shù)是40°.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:787引用:4難度:0.5
相似題
-
1.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,CE平分∠BCF嗎?請說明理由.
發(fā)布:2025/6/9 1:0:1組卷:450引用:1難度:0.5 -
2.如圖所示,已知∠1+∠2=180°,∠B=∠3,求證:∠ACB=∠AED.
發(fā)布:2025/6/9 0:0:2組卷:999引用:14難度:0.3 -
3.完成下面的填空.
如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2.
證明:∠CED+∠ACB=180°
請你將小明的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知),
∴∠FGB=∠CDB=90° ( ).
∴GF∥CD( ).
∵GF∥CD(已證),
∴∠2=∠BCD ( ).
又∵∠1=∠2(已知),
∴∠1=∠BCD ( ).
∴DE∥BC ( ).
∴∠CED+∠ACB=180° ( ).發(fā)布:2025/6/9 2:30:1組卷:221引用:3難度:0.7