如圖,在邊長為a的正方形上裁去邊長為b的正方形.
(1)圖1,陰影面積是 a2-b2a2-b2;
(2)圖2是將圖1中的陰影部分裁開,重新拼成梯形,其面積是 (a+b)(a-b)(a+b)(a-b)(寫成多項(xiàng)式乘法的形式);
(3)由圖可以得到乘法公式 (a+b)(a-b)=a2-b2(a+b)(a-b)=a2-b2;
(4)運(yùn)用得到的公式,計(jì)算:(1-122)(1-132)(1-142)?(1-11002).
(
1
-
1
2
2
)
(
1
-
1
3
2
)
(
1
-
1
4
2
)
?
(
1
-
1
100
2
)
【考點(diǎn)】完全平方公式的幾何背景.
【答案】a2-b2;(a+b)(a-b);(a+b)(a-b)=a2-b2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:361引用:4難度:0.6
相似題
-
1.如圖,現(xiàn)有一塊長為(a+4b)米,寬為(a+b)米的長方形地塊,規(guī)劃將陰影部分進(jìn)行綠化,中間預(yù)留部分是邊長為(a-b)米的正方形.
(1)求綠化的面積S(用含a,b的代數(shù)式表示,并化簡);
(2)若a=3,b=2,綠化成本為100元/平方米,則完成綠化共需要多少元?發(fā)布:2025/6/8 18:30:1組卷:150引用:3難度:0.5 -
2.請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:
①a+b的值;
②a4-b4的值.發(fā)布:2025/6/8 16:0:1組卷:4800引用:21難度:0.3 -
3.【探究】如圖①,從邊長為a的大正方形中剪掉一個(gè)邊長為b的小正方形,將陰影部分沿虛線剪開,拼成圖②的長方形.
(1)請你分別表示出這兩個(gè)圖形中陰影部分的面積;
(2)比較兩圖的陰影部分面積,可以得到乘法公式:(用字母表示);
【應(yīng)用】請應(yīng)用這個(gè)公式完成下列各題:
計(jì)算:
(2a+b-c)(2a-b+c).發(fā)布:2025/6/8 17:30:2組卷:74引用:1難度:0.6