當(dāng)前位置:
試題詳情
已知函數(shù)f(x)=ax-lnx(a∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使得f(x)x2+lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f(1x)成立,求a的取值范圍.
f
(
x
)
x
2
1
x
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:113引用:2難度:0.1
相似題
-
1.直線y=
x+b是曲線y=lnx的一條切線,則實數(shù)b的值為( )12A.2 B.ln2+1 C.ln2-1 D.ln2 發(fā)布:2025/1/7 12:30:6組卷:63引用:5難度:0.9 -
2.設(shè)曲線
在點(1,1)處的切線與直線ax+y+1=0垂直,則a=( )y=lnxx+1A.-1 B. 12C. -12D.1 發(fā)布:2024/12/29 15:30:4組卷:89引用:3難度:0.7 -
3.曲線y=lnx上一點P和坐標(biāo)原點O的連線恰好是該曲線的切線,則點P的橫坐標(biāo)為( )
A.e2 B. eC.e D.2 發(fā)布:2025/1/3 16:0:5組卷:12引用:6難度:0.7