如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以2cm/s的速度向點A勻速運動,同時,點E從點A出發(fā)沿AB方向以1cm/s的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t s.過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
【考點】四邊形綜合題.
【答案】(1)證明見解答過程;
(2)當(dāng)t=20時,?AEFD是菱形;
(3)當(dāng)t=15時△DEF是直角三角形(∠EDF=90°);當(dāng)t=20時,△DEF是直角三角形(∠DEF=90°).
(2)當(dāng)t=20時,?AEFD是菱形;
(3)當(dāng)t=15時△DEF是直角三角形(∠EDF=90°);當(dāng)t=20時,△DEF是直角三角形(∠DEF=90°).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/9 8:0:9組卷:26引用:3難度:0.1
相似題
-
1.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落在點E處,AE交CD于點F,且已知AB=8,BC=4.
(1)判斷△ACF的形狀,并說明理由;
(2)求△ACF的面積;
(3)點P為AC上一動點,則PE+PF最小值為.發(fā)布:2025/6/8 19:30:1組卷:143引用:2難度:0.3 -
2.在矩形ABCD中,AB=3,BC=8,F(xiàn)是BC邊上的中點,動點E在邊AD上,連接EF,過點F作FP⊥EF分別交射線AD、射線CD于點P、Q.
(1)如圖1,當(dāng)點P與點Q重合時,求PF的長;
(2)如圖2,當(dāng)點Q在線段CD上(不與C,D重合)且tanP=時,求AE的長;12
(3)線段PF將矩形分成兩個部分,設(shè)較小部分的面積為y,AE長為x,求y與x的函數(shù)關(guān)系式.發(fā)布:2025/6/8 19:0:1組卷:200引用:2難度:0.3 -
3.按要求回答下列問題:
發(fā)現(xiàn)問題.
(1)如圖(1),在正方形ABCD中,點E,F(xiàn)分別是BC,CD邊上的動點,且∠EAF=45°,易證:EF=DF+BE.(不必證明);
(2)類比延伸
①如圖(2),在正方形ABCD中,如果點E,F(xiàn)分別是邊BC,CD延長線上的動點,且∠EAF=45°,則(1)中的結(jié)論還成立嗎?請寫出證明過程;
②如圖(3),如果點E,F(xiàn)分別是邊BC,CD延長線上的動點,且∠EAF=45°,則EF,BE,DF之間的數(shù)量關(guān)系是 .(不要求證明)
(3)拓展應(yīng)用:如圖(1),若正方形的ABCD邊長為6,,求EF的長.AE=35發(fā)布:2025/6/8 18:30:1組卷:235引用:4難度:0.1