(1)模型探究:如圖1,D、E、F分別為△ABC三邊BC、AB、AC上的點,且∠B=∠C=∠EDF=a.△BDE與△CFD相似嗎?請說明理由;
(2)模型應用:△ABC為等邊三角形,其邊長為8,E為AB邊上一點,F為射線AC上一點,將△AEF沿EF翻折,使A點落在射線CB上的點D處,且BD=2.
①如圖2,當點D在線段BC上時,求AEAF的值;
②如圖3,當點D落在線段CB的延長線上時,求△BDE與△CFD的周長之比.

AE
AF
【考點】相似形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:1717引用:7難度:0.4
相似題
-
1.如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON于點B、點C,連接AB、PB.
(1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數量關系;
(2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數量關系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設=k,當P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.APOQ發布:2025/5/24 23:30:2組卷:2276引用:6難度:0.3 -
2.如圖1,Rt△ABC中,∠A=90°,D為AB上一點,∠ACD=∠B.
(1)求證:AC2=AD?AB;
(2)如圖2,過點A作AM⊥CD于M,交BC于點E,若,求CDBC=12的值;AMME
(3)如圖3,N為CD延長線上一點,連接AN、BN,若,∠NBD=2∠ACD,則tan∠ANC的值為 .CDBN=53發布:2025/5/24 23:30:2組卷:239引用:1難度:0.3 -
3.【操作發現】
(1)如圖1,在邊長為1個單位長度的小正方形組成的網格中,△ABC的三個頂點均在格點上.請按要求畫圖:將ABC繞點A順時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′,此時∠ABB′=;
【問題解決】
在某次數學興趣小組活動中,小明同學遇到了如下問題:
(2)如圖2,在等邊△ABC中,點P在內部,且PA=3,PC=4,∠APC=150°,求PB的長.
經過同學們的觀察、分析、思考、交流、對上述問題形成了如下想法:將△APC繞點A按順時針方向旋轉60°,得到△ABP′,連接PP′,尋找PA、PB、PC三邊之間的數量關系……請參考他們的想法,完成該問題的解答過程;
【學以致用】
(3)如圖3,在等邊△ABC中,AC=7,點P在△ABC內,且∠APC=90°,∠BPC=120°.求△APC的面積;
【思維拓展】
如圖4,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k為常數),請直接寫出BD的長(用含k的式子表示).發布:2025/5/24 23:0:1組卷:789引用:2難度:0.2