試卷征集
          加入會員
          操作視頻

          如圖,等腰梯形ABCD中,CD∥AB,對角線ACBD相交于O,∠ACD=60°,點S,P,Q分別是OD,OA,BC的中點,
          (1)求證:△PQS是等邊三角形;
          (2)若AB=5,CD=3,求△PQS的面積;
          (3)若△PQS的面積與△AOD的面積的比是7:8,求梯形上、下兩底的比CD:AB.

          【考點】面積及等積變換
          【答案】見試題解答內容
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:495引用:2難度:0.1
          相似題
          • 1.用面積方法證明:三角形兩邊中點連線平行于第三邊.

            發布:2025/5/29 9:0:1組卷:52難度:0.7
          • 2.△ABC中,A、B兩點坐標分別是(0,0)和(36,15),點C的橫、縱坐標均為整數,則△ABC的面積的最小值是( ?。?/h2>

            發布:2025/6/25 7:0:2組卷:108引用:1難度:0.5
          • 3.設E、F是△ABC邊AB、AC上的點,線段BE、CF交于D,已知△BDF,△BCD,△CDE的面積分別為3,7,7,則四邊形AEDF的面積為

            發布:2025/6/25 7:0:2組卷:964引用:7難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正