設S1=1+112+122,S2=1+122+132,S3=1+132+142,…,Sn=1+1n2+1(n+1)2.若S=S1+S2+…+Sn,求S(用含n的代數式表示,其中n為正整數).
S
1
=
1
+
1
1
2
+
1
2
2
S
2
=
1
+
1
2
2
+
1
3
2
S
3
=
1
+
1
3
2
+
1
4
2
S
n
=
1
+
1
n
2
+
1
(
n
+
1
)
2
S
=
S
1
+
S
2
+
…
+
S
n
【考點】實數的運算.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:713引用:5難度:0.5