試卷征集
          加入會員
          操作視頻

          觀察下列具有一定規律的三行數:
          第一行 1 4 9 16 25 ……
          第二行 -1 2 7 14 23 ……
          第三行 2 8 18 32 50 ……
          (1)第一行第n個數為
          n2
          n2
          (用含n的式子表示);
          (2)取出每行的第m個數,這三個數的和為482,求m的值;
          (3)第四行的每個數是將第二行相對應的每個數乘以k得到的,若這四行取出每行的第n個數,發現無論n是多少,這四個數的和為定值,則k=
          -4
          -4

          【答案】n2;-4
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/10/5 13:0:1組卷:296引用:2難度:0.5
          相似題
          • 1.觀察下列一組數的排列規律:
            1
            ,
            8
            5
            15
            7
            ,
            24
            9
            ,
            35
            11
            48
            13
            ,
            63
            15
            ,
            80
            17
            ,
            99
            19
            …那么這一組數的第2021個數

            發布:2025/5/25 3:30:2組卷:43引用:2難度:0.6
          • 2.一組按規律排列的代數式:a+2b,a2-2b3,a3+2b5,a4-2b7,…,則第n個式子是

            發布:2025/5/25 5:30:2組卷:911引用:7難度:0.6
          • 3.有一系列式子,按照一定的規律排列成3a2,9a5,27a10,81a17,……,則第n個式子為( ?。╪為正整數)

            發布:2025/5/25 7:30:1組卷:191引用:4難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正