試卷征集
          加入會員
          操作視頻

          已知圓M:x2+(y-2)2=1,Q是x軸上的動點,QA,QB分別切圓M于A,B兩點.
          (1)若
          |
          AB
          |
          =
          4
          2
          3
          ,求|MQ|及直線MQ的方程;
          (2)求證:直線AB恒過定點.

          【答案】(1)2x+
          5
          y
          -2
          5
          =0,或2x-
          5
          y
          +
          2
          5
          =0.
          (2)證明:設點Q(q,0),由幾何性質可以知道,A,B在以QM為直徑的圓上,
          此圓的方程為x2+y2-qx-2y=0,AB為兩圓的公共弦,
          兩圓方程相減得qx-2y+3=0,
          ∴直線AB:y=
          q
          2
          x
          +
          3
          2
          恒過定點(0,
          3
          2
          ).
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:72引用:2難度:0.5
          相似題
          • 1.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
            3
            ,則實數a的值是(  )

            發布:2025/1/5 18:30:5組卷:112引用:1難度:0.6
          • 2.已知x,y滿足x2+y2=1,則
            y
            -
            2
            x
            -
            1
            的最小值為(  )

            發布:2024/12/29 10:30:1組卷:31引用:2難度:0.9
          • 3.已知圓C:x2+y2+2ay=0(a>0)截直線
            3
            x
            -
            y
            =
            0
            所得的弦長為
            2
            3
            ,則圓C與圓C':(x-1)2+(y+1)2=1的位置關系是(  )

            發布:2025/1/1 11:0:5組卷:86引用:4難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正