如圖,拋物線y=-18x2+mx+n經過△ABC的三個頂點,點A坐標為(0,3),點B坐標為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數關系表達式及點C的坐標;
(2)點E為線段OC上一動點,以OE為邊在第一象限內作正方形OEFG,當正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動.設平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數關系式及自變量t的取值范圍;并求出當t為何值時,S有最大值,最大值是多少?

1
8
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 14:0:0組卷:498引用:52難度:0.5
相似題
-
1.已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正
半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.發布:2025/5/28 2:30:1組卷:587引用:65難度:0.1 -
2.如圖,二次函數y=x2+bx+c的圖象與x軸只有一個公共點P,與y軸的交點為Q.過點Q的直線y=2x+m與x軸交于點A,與這個二次函數的圖象交于另一點B,若S△BPQ=3S△APQ,求這個二次函數的解析式.
發布:2025/5/28 3:30:1組卷:266引用:5難度:0.1 -
3.已知拋物線y=x2+px+q上有一點M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當點M為(1,-1997)時,求整數x1、x2.發布:2025/5/28 2:0:5組卷:254引用:1難度:0.5