設(shè)橢圓C:x2a2+y2b2=1(a>b>0)的離心率為22,過原點(diǎn)O斜率為1的直線l與橢圓C相交于M,N兩點(diǎn),橢圓右焦點(diǎn)F到直線l的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓上異于M,N外的一點(diǎn),當(dāng)直線PM,PN的斜率存在且不為零時(shí),記直線PM的斜率為k1,直線PN的斜率為k2,試探究k1?k2是否為定值?若是,求出定值;若不是,說明理由.
x
2
a
2
+
y
2
b
2
2
2
2
【考點(diǎn)】橢圓的標(biāo)準(zhǔn)方程;直線與圓錐曲線的綜合.
【答案】(I);
(Ⅱ)是定值,.
x
2
8
+
y
2
4
=
1
(Ⅱ)是定值,
-
1
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:472引用:10難度:0.5
相似題
-
1.已知橢圓的標(biāo)準(zhǔn)方程為
,則橢圓的焦點(diǎn)坐標(biāo)為( ?。?/h2>x210+y2=1A. (10,0),(-10,0)B. (0,10),(0,-10)C.(0,3),(0,-3) D.(3,0),(-3,0) 發(fā)布:2024/11/24 8:0:2組卷:1251引用:2難度:0.9 -
2.把橢圓
繞左焦點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,則所得橢圓的準(zhǔn)線方程為.x225+y29=1發(fā)布:2024/12/1 8:0:1組卷:28引用:1難度:0.5 -
3.已知方程
表示曲線C,則下列說法正確的是( ?。?/h2>y24-2a+x2a=1A.“a>2”是“曲線C為雙曲線”的充分不必要條件 B.“0<a<2”是“曲線C為橢圓”的充要條件 C.若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<a<2 D.若曲線C表示焦點(diǎn)在y軸上的雙曲線,則a<0 發(fā)布:2024/12/19 18:30:1組卷:235引用:7難度:0.6