如圖,將邊長(a+b)的正方形剪出兩個邊長分別為a,b的正方形(陰影部分).觀察圖形,解答下列問題:
(1)根據題意,用兩種不同的方法表示陰影部分的面積,即用兩個不同的代數式表示陰影部分的面積.
方法1:a2+b2a2+b2,方法2:(a+b)2-2ab(a+b)2-2ab;
(2)從中你發現什么結論呢?a2+b2=(a+b)2-2aba2+b2=(a+b)2-2ab,
(3)運用你發現的結論,解決下列問題:
?①已知x+y=6,12xy=2,求x2+y2的值;
②已知(2023-x)2+(x-2022)2=9,求(2023-x)(x-2022)的值.
1
2
xy
=
2
【答案】a2+b2;(a+b)2-2ab;a2+b2=(a+b)2-2ab
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/4 8:0:9組卷:149引用:1難度:0.6
相似題
-
1.對于一個各數位上的數字均不為0的三位自然數p,將它各個數位上的數字平方后再取其個位,得到三個新的數字;再將這三個新數字重新組合成三位數
,當|x+2y-z|的值最小時,稱此時的xyz為自然數p的理想數,并規定K(p)=(x-z)2+y,例如245,各數字平方后取個位分別為4,6,5,再重新組合為465,456,546,564,654,645,因為|5+2×4-6|=7最小,所以546是原三位數245的理想數,此時K(p)=(5-6)2+4=5;xyz
若一個三位正整數的十位數字是個位數字的2倍,則稱這個數為自信數,例如384,其中8=4×2,所以384是自信數;對于一個各數位上的數字均不為0三位正整數p,把它的個位數字和百位數字交換所得的新三位數記為p1,把它的個位數字和十位數字交換所得到的新三位數記為p2,若p1,p2,p這三個數的和能被29整除,則稱這個數p為成功數.若一個成功數p也是自信數,求所以符合條件的成功數中K(p)的最小值.發布:2025/5/24 19:30:1組卷:64引用:1難度:0.4 -
2.已知a-b=-l,則3a2-6ab+3b2=.
發布:2025/5/24 17:0:2組卷:6引用:1難度:0.6 -
3.材料:一個兩位數記為x,另外一個兩位數記為y,規定F(x,y)=
,當F(x,y)為整數時,稱這兩個兩位數互為“均衡數”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數”,又如x=54,y=43,F(54,43)=42+217不是整數,所以54,43不是互為“均衡數”.54+437
(1)請判斷40,41和52,17是不是互為“均衡數”,并說明理由.
(2)已知x,y是互為“均衡數”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數),規定G(x,y)=2x-y.若G(x,y)除以7余數為2,求出F(x,y)值.發布:2025/5/24 8:30:1組卷:205引用:2難度:0.4