已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=α,∠EMF=β,且60-2α+|β-30|=0.
(1)α=3030°,β=3030°;直線AB與CD的位置關(guān)系是AB∥CDAB∥CD;
(2)如圖2,若點(diǎn)G是射線MA上任意一點(diǎn),且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M1和點(diǎn)N1時(shí),作∠PM1B的角平分線M1Q與射線FM相交于點(diǎn)Q,問在旋轉(zhuǎn)的過程中∠FPN1∠Q的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.

60
-
2
α
∠
FP
N
1
∠
Q
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】30;30;AB∥CD
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/4 8:0:1組卷:1547引用:4難度:0.6
相似題
-
1.已知的三角形的三個(gè)內(nèi)角的度數(shù)和是180°,如圖是兩個(gè)三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.
(1)當(dāng)AB∥DC時(shí),如圖①,求∠DCB的度數(shù).
(2)當(dāng)CD與CB重合時(shí),如圖②,判斷DE與AC的位置關(guān)系,并說明理由.
(3)如圖③,當(dāng)∠DCB等于度時(shí),AB∥EC.發(fā)布:2025/6/8 19:0:1組卷:172引用:4難度:0.5 -
2.如圖,AC,BD被AB所截,E為AB外一點(diǎn),連接CE,ED,已知∠A=(90+x)°,∠B=(90-x)°,∠CED=90°,2∠C-∠D=α°.
(1)判斷AC與BD的位置關(guān)系,并說明理由;
(2)當(dāng)α=30°時(shí),求∠C,∠D的度數(shù);
(3)求∠C,∠D的度數(shù)(用含α的式子表示).發(fā)布:2025/6/8 19:30:1組卷:83引用:2難度:0.7 -
3.將一副三角板按如圖放置,則下列結(jié)論:
①∠1=∠3;②如果∠2=30°,則有AC∥DE;③∠2+∠CAD=180°;④如果∠4=∠C,必有AB⊥ED.其中正確的有 (填寫序號(hào))發(fā)布:2025/6/8 19:0:1組卷:354引用:6難度:0.7