【問題提出】
數學課上,學習了直角三角形全等的判定方法(即“HL”)后,我們繼續對“兩個直角三角形滿足一條直角邊和周長分別相等”的情形進行研究.
【問題解決】
(1)如圖①,在Rt△ABC和Rt△DEF中,∠B=∠E=90°,AB=DE,△ABC和△DEF的周長相等.求證:△ABC≌△DEF.

(Ⅰ)根據小紅的思考,請將小紅的解答過程補充完整;
小紅的思考
設AB=DE=m,△ABC的周長=△DEF的周長=n,AC=x. 在Rt△ABC中,根據勾股定理,得 m2+(n-m-x)2=x2 m2+(n-m-x)2=x2 ,解得x = 2 m 2 + n 2 - 2 mn 2 n - 2 m 同理可得 DF = 2 m 2 + n 2 - 2 mn 2 n - 2 m 根據 HL HL ,可以知道Rt△ABC≌Rt△DEF. |
小明的思考
如圖②,在Rt△ABC和Rt△DEF中,分別延長BC,EF至G,H,使得CG=AC,FH=DF,連接AG,DH. |
(2)如圖③,已知線段m,n.用直尺和圓規求作一個Rt△ABC,使∠B=90°,AB=m,△ABC的周長為n.(保留作圖痕跡,寫出必要的文字說明)
(3)下列命題是真命題的有
A,B,C
A,B,C
.A.斜邊和周長分別相等的兩個直角三角形全等
B.斜邊和面積分別相等的兩個直角三角形全等
C.一個銳角和周長分別相等的兩個直角三角形全等
D.斜邊和斜邊上的中線分別相等的兩個直角三角形全等
【考點】三角形綜合題.
【答案】m2+(n-m-x)2=x2;HL;A,B,C
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:742引用:1難度:0.2
相似題
-
1.某興趣小組探索等腰三角形中線段比值問題,部分探索活動如下:
(1)如圖1,在△ABC中,AB=AC,∠ABC=60°,D,E分別是BC,AC邊上的點,∠AFE=∠ABC,則的值為 .BEAD
(2)如圖2,在△ABC中,AB=AC,∠ABC=45°,D,E分別是BC,AC邊上的點,∠AFE=∠ABC,請你猜想的值,并給出證明;BEAD
(3)如圖3,在△ABC中,AB=AC,,D,E分別是BC,CA邊延長線上的點,∠DFB=∠ABC,請直接寫出cos∠ABC=512的值.BEAD發布:2025/5/26 0:0:1組卷:153引用:1難度:0.4 -
2.在△ABC中,AB=AC,BC=12,E為邊AC的中點,
(1)如圖1,過點E作EH⊥BC,垂足為點H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點D、O、F.
①如圖2,當∠BAC=90°時,求BD的長;
②如圖3,設tan∠ACB=x,BD=y,求y與x之間的函數表達式和tan∠ACB的最大值.發布:2025/5/26 1:0:1組卷:278引用:2難度:0.1 -
3.如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠BAD=°,∠DEC=°;
(2)當DC等于多少時,△ABD與△DCE全等?請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數.若不可以,請說明理由.發布:2025/5/26 2:30:2組卷:976引用:8難度:0.3