已知函數(shù)f(x)=lnx+a2x2-(a+1)x(a∈R),g(x)=f(x)-a2x2+(a+1)x.
(1)討論f(x)的單調(diào)性;
(2)任取兩個(gè)正數(shù)x1,x2,當(dāng)x1<x2時(shí),求證:g(x1)-g(x2)<2(x1-x2)x1+x2.
f
(
x
)
=
lnx
+
a
2
x
2
-
(
a
+
1
)
x
(
a
∈
R
)
,
g
(
x
)
=
f
(
x
)
-
a
2
x
2
+
(
a
+
1
)
x
g
(
x
1
)
-
g
(
x
2
)
<
2
(
x
1
-
x
2
)
x
1
+
x
2
【答案】(1)當(dāng)a≤0時(shí),f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;
當(dāng)0<a<1時(shí),f(x)在(0,1),上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)a=1時(shí),f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a>1時(shí),f(x)在,(1,+∞)上單調(diào)遞增,在上單調(diào)遞減;
(2)證明過程見解答.
當(dāng)0<a<1時(shí),f(x)在(0,1),
(
1
a
,
+
∞
)
(
1
,
1
a
)
當(dāng)a=1時(shí),f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a>1時(shí),f(x)在
(
0
,
1
a
)
(
1
a
,
1
)
(2)證明過程見解答.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/4 8:0:9組卷:257引用:6難度:0.3
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實(shí)數(shù)k的取值范圍( )f(kex)+f(-12x)>2A.( ,+∞)12eB.( ,12e)2e2C.( ,12e]2e2D.( ,1]2e2發(fā)布:2025/1/5 18:30:5組卷:298引用:2難度:0.4 -
2.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時(shí),y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:48引用:4難度:0.5 -
3.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個(gè)極值點(diǎn)x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:191引用:2難度:0.1