如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=a(x+5)(x-4)交x軸于點A、B(OB<OA),與y軸交于點C,過點B的直線y=bx-3交y軸于點D,連接AC,且∠ACO+∠ABD=∠BAC.

(1)求a,b的值;
(2)第一象限內的點P在此拋物線上,連接DP、BP,設點P的橫坐標為t,△DBP的面積為S,求S關于t的函數(shù)解析式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,點E是第三象限內的點,連接EA、CE,且EA=CE,點N是EC中點,過點E向射線AN作垂線,垂足為點G,交AC的延長線于點F,∠ANC=∠AEF,點K為AC上的一點,連接GK,過點F作GK的垂線,交AG于H,交AE于M,連接HK,AH平分∠MHK,當PF∥y軸時,求△DBP的面積及∠MFP的度數(shù).
【考點】二次函數(shù)綜合題.
【答案】(1),;
(2);
(3),∠MFP=45°.
a
=
1
2
b
=
3
4
(2)
S
=
t
2
-
1
2
t
-
14
(3)
S
△
DBP
=
17
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:67引用:2難度:0.4
相似題
-
1.平面直角坐標系xOy中,拋物線y=ax2-3ax+1與y軸交于點A.
(1)求點A的坐標及拋物線的對稱軸;
(2)當-1≤x≤2時,y的最大值為3,求a的值;
(3)已知點P(0,2),Q(a+1,1).若線段PQ與拋物線只有一個公共點,結合函數(shù)圖象,求a的取值范圍.發(fā)布:2025/5/24 10:30:2組卷:1465引用:13難度:0.2 -
2.如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點坐標為C(3,6),并與y軸交于點B(0,3),點A是對稱軸與x軸的交點,直線AB與拋物線的另一個交點為D.
(1)求拋物線的解析式;
(2)連接BC、CD,判斷△BCD是什么特殊三角形,并說明理由;
(3)在坐標軸上是否存在一點P,使△BDP為以BD為直角邊的直角三角形?若存在,直接寫出點P坐標;若不存在,說明理由.發(fā)布:2025/5/24 10:30:2組卷:294引用:1難度:0.1 -
3.如圖,在平面直角坐標系中,拋物線y=ax2+bx-3與x軸交于A(-1,0),B(3,0)兩點.
(1)求拋物線的解析式;
(2)已知點D(0,-1),點P為線段BC上一動點,連接DP并延長交拋物線于點H,連結BH,當四邊形ODHB的面積為時,求點H的坐標;112
(3)已知點E為x軸上一動點,點Q為第二象限拋物線上一動點,以CQ為斜邊作等腰直角三角形CEQ,請直接寫出點E的坐標.發(fā)布:2025/5/24 10:30:2組卷:772引用:4難度:0.1