愛好數學的小明在探究兩條直線的位置關系查閱資料時,發現了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”,設BC=a,AC=b,AB=c.
[特例探究]
(1)如圖1,當tan∠PAB=1,c=62時,a=6565,b=6565;
如圖2,當∠PAB=30°,c=4時,a=2727,b=213213;
[歸納證明]
(2)請你觀察圖1中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
[拓展證明]
(3)如圖4,?ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=35,AB=3,求AF的長.
2
5
5
5
5
7
7
13
13
5
【考點】四邊形綜合題.
【答案】6;6;2;2
5
5
7
13
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:84引用:1難度:0.2
相似題
-
1.如圖,正方形ABCD中,在AD的延長線上取點E,F,使DE=AD,DF=BD,連接BF分別交CD,CE于H,G下列結論正確的有
①GD=GH;②EC=2DG;③S△CDG=S四邊形DHGE; ④圖中有7個等腰三角形.發布:2025/5/27 4:0:1組卷:172難度:0.5 -
2.在平行四邊形ABCD中,M,N分別是邊AD,AB的點,AB=kAN,AD=kAM.
(1)如圖1,若連接MN,BD,求證:MN∥BD;
(2)如圖2,把△AMN繞點A順時針旋轉角度α(0°<α<90°)得到△AFE,M,N的對應點分別為點E,F,連接BE,若∠ABF=∠EBC,∠AEB=2∠DAE.
①直接寫出k的取值范圍;
②當tan∠EBC=時,求k的值.13發布:2025/5/26 11:30:1組卷:207引用:3難度:0.2 -
3.如圖,在四邊形ABCD中,AD∥BC,∠DAB=90°,AB=6cm,BC=8cm,AD=4cm.點P從點A出發沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發沿CA 向點A勻速運動,速度是1cm/s,當一個點到達終點,另一個點立即停止運動.連接PQ,BP,BQ,設運動時間為t(s),解答下列問題:
(1)當t為何值時,PQ∥CD?
(2)設△BPQ的面積為s(cm2),求s與t之間的函數關系式;
(3)是否存在某一時刻t,使得△BPQ的面積為四邊形ABCD面積的?若存在,求出此時t的值;若不存在,說明理由;12
(4)連接BD,是否存在某一時刻t,使得BP平分∠ABD?若存在,求出此時t的值;若不存在,說明理由.發布:2025/5/26 12:0:1組卷:399引用:2難度:0.1