人教五四新版九年級(上)中考題單元試卷:第28章 二次函數(24)
發布:2024/4/20 14:35:0
一、解答題(共30小題)
-
1.已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點C,A(1,-1),B(3,-1),動點P從點O出發,沿著x軸正方向以每秒2個單位長度的速度移動.過點P作PQ垂直于直線OA,垂足為點Q,設點P移動的時間t秒(0<t<2),△OPQ與四邊形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線的解析式,并確定頂點M的坐標;
(2)用含t的代數式表示點P、點Q的坐標;
(3)如果將△OPQ繞著點P按逆時針方向旋轉90°,是否存在t,使得△OPQ的頂點O或頂點Q在拋物線上?若存在,請求出t的值;若不存在,請說明理由;
(4)求出S與t的函數關系式.組卷:3884引用:61難度:0.1 -
2.如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為直線x=1.
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數式表示S.組卷:3583引用:62難度:0.1 -
3.如圖,已知拋物線y=
(x+2)(x-4)(k為常數,且k>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經過點B的直線y=-k8x+b與拋物線的另一交點為D.33
(1)若點D的橫坐標為-5,求拋物線的函數表達式;
(2)若在第一象限內的拋物線上有點P,使得以A,B,P為頂點的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發,沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?組卷:9688引用:70難度:0.1 -
4.如圖,在平面直角坐標系中,拋物線y=ax2+bx-3(a≠0)與x軸交于點A(-2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發,在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發,在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S△CBK:S△PBQ=5:2,求K點坐標.組卷:5718引用:69難度:0.1 -
5.如圖,拋物線y=ax2+bx+c經過A(-3,0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.組卷:4917引用:62難度:0.1 -
6.如圖,已知拋物線y=x2+bx+c的頂點坐標為M(0,-1),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)判斷△MAB的形狀,并說明理由;
(3)過原點的任意直線(不與y軸重合)交拋物線于C、D兩點,連接MC,MD,試判斷MC、MD是否垂直,并說明理由.組卷:2343引用:56難度:0.1 -
7.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(-2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.組卷:5311引用:67難度:0.1 -
8.如圖,在平面直角坐標系xOy中,頂點為M的拋物線是由拋物線y=x2-3向右平移一個單位后得到的,它與y軸負半軸交于點A,點B在該拋物線上,且橫坐標為3.
(1)求點M、A、B坐標;
(2)連接AB、AM、BM,求∠ABM的正切值;
(3)點P是頂點為M的拋物線上一點,且位于對稱軸的右側,設PO與x軸正半軸的夾角為α,當α=∠ABM時,求P點坐標.組卷:4692引用:54難度:0.1 -
9.如圖①,直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點,將△AOB繞點O逆時針旋轉90°得到△COD,過點A,B,D的拋物線P叫做l的關聯拋物線,而l叫做P的關聯直線.
(1)若l:y=-2x+2,則P表示的函數解析式為;若P:y=-x2-3x+4,則l表示的函數解析式為.
(2)求P的對稱軸(用含m,n的代數式表示);
(3)如圖②,若l:y=-2x+4,P的對稱軸與CD相交于點E,點F在l上,點Q在P的對稱軸上.當以點C,E,Q,F為頂點的四邊形是以CE為一邊的平行四邊形時,求點Q的坐標;
(4)如圖③,若l:y=mx-4m,G為AB中點,H為CD中點,連接GH,M為GH中點,連接OM.若OM=,直接寫出l,P表示的函數解析式.10組卷:4045引用:56難度:0.1 -
10.如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.組卷:5200引用:61難度:0.1
一、解答題(共30小題)
-
29.如圖,拋物線y=x2-2mx(m>0)與x軸的另一個交點為A,過P(1,-m)作PM⊥x軸于點M,交拋物線于點B.點B關于拋物線對稱軸的對稱點為C.
(1)若m=2,求點A和點C的坐標;
(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;
(3)在坐標軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標;若不存在,請說明理由.組卷:2121引用:53難度:0.1 -
30.如圖,拋物線y=-
x2+14x-2交x軸于A,B兩點(點A在點B的左側),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉,使點D旋轉到y軸上得到△FEC,連接BF.32
(1)求點B,C所在直線的函數解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.組卷:2235引用:52難度:0.1