試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          人教新版八年級上冊《第14章 整式的乘法與因式分解》2023年單元測試卷(9)

          發布:2024/9/13 5:0:8

          一、選擇題

          • 1.下列計算中正確的是(  )

            組卷:114引用:2難度:0.9
          • 2.計算(x-1)(x2+x+1)的結果應是(  )

            組卷:138引用:2難度:0.7
          • 3.下列各多項式中不能用公式法分解的是(  )

            組卷:69引用:2難度:0.7
          • 4.若xm÷x2n+1=x,則m與n的關系是(  )

            組卷:1647引用:8難度:0.9
          • 5.若2m=5,4n=3,則43n-m的值是(  )

            組卷:2158引用:8難度:0.7
          • 6.如圖,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個相同長方形的兩邊長(x>y),給出以下關系式:①x+y=m;②x-y=n;③xy=
            m
            2
            -
            n
            2
            4
            .其中正確的關系式的個數有(  )

            組卷:1306引用:3難度:0.7
          • 7.下列各式中,計算正確的是(  )

            組卷:1525引用:4難度:0.7
          • 8.觀察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…設n表示正整數,下面符合上述規律的等式是(  )

            組卷:211引用:7難度:0.9
          • 9.已知(m-n)2=32,(m+n)2=4000,則m2+n2的值為(  )

            組卷:1052引用:8難度:0.7

          三、解答題

          • 27.閱讀理解并填空:
            (1)為了求代數式x2+2x+3的值,我們必須知道x的值.
            若x=1,則這個代數式的值為

            若x=2,則這個代數式的值為

            …可見,這個代數式的值因x的取值不同而變化,盡管如此,我們還是有辦法來考慮這個代數式的值的范圍.
            (2)把一個多項式進行部分因式分解可以解決求代數式的最大(或最小)值問題.
            例如x2+2x+3=x2+2x+1+2=(x+1)2+2,因為(x+1)2是非負數,所以這個代數式的最小值是
            ,此時相應的x的值是

            (3)求代數式x2-12x+35的最小值,并寫出相應的x的值.
            (4)求代數式-x2-6x+12的最大值,并寫出相應的x的值.

            組卷:901引用:3難度:0.3
          • 28.已知a,b,c是△ABC的三邊,試判斷(a2+b2+c22與4a2b2的大小.

            組卷:53引用:2難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正