2022-2023學年江蘇省無錫市四校聯考高一(下)期中數學試卷
發布:2024/8/27 4:0:8
一、單選題(本大題共8小題,每小題只有一個正確選項,每題5分,共40分)
-
1.已知復數
,則z?z=2+i1-i=( )zA.1 B. 32C.2 D. 52組卷:65引用:2難度:0.8 -
2.一個水平放置的平面圖形,用斜二測畫法畫出了它的直觀圖,如圖所示,此直觀圖恰好是一個邊長為2的正方形,則原平面圖形的面積為( )
A. 2B. 42C.8 D. 82組卷:442引用:5難度:0.8 -
3.一質點在力
=(-3,5),F1=(2,-3)的共同作用下,由點A(10,-5)移動到B(4,0),則F2,F1的合力F2對該質點所做的功為( )FA.16 B.-24 C.110 D.-110 組卷:197引用:3難度:0.8 -
4.在△ABC中,a2+b2+c2=2bccosA+2accosB,則△ABC一定是( )
A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等邊三角形 組卷:236引用:3難度:0.8 -
5.中國古代數學家劉徽在《九章算術注》中,稱一個正方體內兩個互相垂直的內切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長寬高皆為八分之一正方體的棱長的倒四棱錐“等冪等積”,計算出牟合方蓋的體積,據此可知,牟合方蓋的體積與其外切正方體的體積之比為( )
A. 13B. 23C. 83D. 163組卷:172引用:5難度:0.7 -
6.已知
,則cos2α的值為( )α∈(0,π2),sin2α=cos(π4-α)A.0 B. 12C. 32D.- 32組卷:299引用:5難度:0.6 -
7.設A1、A2、A3、A4為平面直角坐標系中兩兩不同的點,若
,A1A3=λA1A2(λ∈R),且A1A4=μA1A2(μ∈R),則稱點A3、A4和諧分割點A1、A2.已知平面上兩兩不同的點A、B、C、D,若C、D和諧分割點A、B.則下面說法正確的是( )1λ+1μ=4A.點C可能是線段AB的中點 B.點C可能是靠近點A的線段AB的三等分點 C.點C、D可能同時在線段AB上 D.點C、D可能同時在線段AB的延長線上 組卷:127引用:3難度:0.5
四、解答題(本大題共6小題,作答各題時須有必要的計算和推理過程,共70分)
-
21.如圖所示,在△ABC中,P在線段BC上,滿足2
=BP,O是線段AP的中點,PC
(1)延長CO交AB于點Q(圖1),求的值;AQQB
(2)過點O的直線與邊AB,AC分別交于點E,F(圖2),設,EB=λAE.FC=μAF
(ⅰ)求證:2λ+μ為定值;
(ⅱ)設△AEF的面積為S1,△ABC的面積為S2,求的最小值.S1S2組卷:619引用:5難度:0.2 -
22.如圖,某公園改建一個三角形池塘,∠C=90°,AB=2百米,BC=1百米,現準備養一批觀賞魚供游客觀賞.
(1)若在△ABC內部取一點P,建造連廊供游客觀賞,方案一如圖①,使得點P是等腰三角形PBC的頂點,且,求連廊AP+PC+PB的長(單位為百米);∠CPB=2π3
(2)若分別在AB,BC,CA上取點D,E,F,并建造連廊,使得△DEF變成池中池,放養更名貴的魚類供游客觀賞:方案二如圖②,使得△DEF為正三角形,設S2為圖②中△DEF的面積,求S2的最小值;方案三如圖③,使得DE平行于AB,且EF垂直于DE,設S3為圖③中△DEF的面積,求S3的取值范圍.組卷:155引用:4難度:0.7