2022-2023學年遼寧省鞍山市高一(下)期中數學試卷
發布:2024/5/17 8:0:8
一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.tan210°=( )
A. 33B. -33C. 3D. -3組卷:143引用:5難度:0.9 -
2.正△ABC的邊長為1,則
=( )AB?BCA. 12B.- 12C. 32D.- 32組卷:148引用:5難度:0.9 -
3.已知
,a均為單位向量,它們的夾角為120°,則b=( )|3a+b|A. 7B.7 C. 13D.13 組卷:658引用:4難度:0.7 -
4.把函數y=sinx的圖象上所有點的橫坐標縮短到原來的
(縱坐標不變),再把圖象上所有的點向左平行移動12個單位長度,得到的圖象所表示的函數是( )π3A. y=sin(2x-π3)B. y=sin(x2+π6)C. y=sin(2x+π3)D. y=sin(2x+2π3)組卷:98引用:5難度:0.6 -
5.已知
,則sin(π6+α)=32的值為( )sin(5π6-α)A. 32B. -32C. 12D. -12組卷:133引用:2難度:0.8 -
6.已知非零向量
,a,b,則“c?a=c?b”是“c=a”的( )bA.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 組卷:3614引用:38難度:0.8 -
7.已知單位向量
,a的夾角為60°,則在下列向量中,與b垂直的是( )bA. a+2bB.2 +abC. -2abD.2 -ab組卷:6378引用:31難度:0.8
四、解答題:本題共6小題,共70分.解答應寫出必要的文字說明、證明過程及演算步驟.
-
21.設函數
.f(x)=23cos2x+(sinx-cosx)2-1
(1)求f(x)的最小正周期和最小值;
(2)若,求g(x)的單調遞增區間.g(x)=f(34π-12x)組卷:126引用:3難度:0.6 -
22.建設生態文明是關系人民福祉、關乎民族未來的長遠大計.某市通宵營業的大型商場,為響應國家節能減排的號召,在氣溫低于0℃時,才開放中央空調,否則關閉中央空調.如圖是該市冬季某一天的氣溫(單位:℃)隨時間t(0≤t≤24,單位:小時)的大致變化曲線,若該曲線近似滿足
關系.f(t)=Asin(ωt-3π4)+b(A>0,ω>0)
(1)求y=f(t)的表達式;
(2)請根據(1)的結論,求該商場的中央空調在一天內開啟的時長.組卷:85引用:2難度:0.6