2023-2024學年北京171中學高二(上)期中數學試卷
發布:2024/10/19 5:0:1
一、選擇題(每小題4分,共40分)
-
1.圓x2+y2-2x+4y+3=0的圓心坐標為( )
A.(-2,4) B.(2,-4) C.(1,-2) D.(-1,2) 組卷:151引用:13難度:0.9 -
2.若直線l1:x-y+1=0與l2:x+ay-1=0垂直,則實數a=( ?。?/h2>
A.1 B.2 C.3 D.-1 組卷:59難度:0.9 -
3.若橢圓
上一點P到橢圓一個焦點的距離為6,則P到另一個焦點的距離為( )x225+y2=1A.3 B.4 C.5 D.6 組卷:82引用:7難度:0.7 -
4.已知空間向量
=(3,1,3),m=(-1,λ,-1),且n∥m,則實數λ=( ?。?/h2>nA.- 13B.-3 C. 13D.6 組卷:1173引用:11難度:0.8 -
5.已知直線ax+y-2+a=0在兩坐標軸上的截距相等,則實數a=( ?。?/h2>
A.1 B.-1 C.-2或1 D.2或1 組卷:997引用:27難度:0.7 -
6.直線y=x-b與曲線
有且僅有一個公共點,則實數b的取值范圍為( )x=4-y2A. {-22,22}B. (-2,2]∪{22}C. [-2,22)∪{22}D. [-2,2)∪{22}組卷:295引用:6難度:0.5 -
7.已知四面體A-BCD的所有棱長都等于2,E是棱AB的中點,F是棱CD靠近C的四等分點,則
等于( ?。?/h2>EF?ACA. -12B. 12C. -52D. 52組卷:241引用:8難度:0.7
三、解答題(本大題共6小題,滿分85分)
-
20.已知橢圓
的左、右焦點分別為F1,F2,其中右焦點坐標為(1,0),該橢圓的離心率為x2a2+y2b2=1(a>b>0).12
(1)求橢圓的標準方程;
(2)已知點P(1,t)為橢圓上一點,過點F2的直線l與橢圓交于異于點P的A,B兩點,若△PAB的面積是,求直線l的方程.927組卷:105引用:1難度:0.5 -
21.“曼哈頓幾何”也叫“出租車幾何”,是在19世紀由赫爾曼?閔可夫斯基提出來的.如圖是抽象的城市路網,其中線段|AB|是歐式空間中定義的兩點最短距離,但在城市路網中,我們只能走有路的地方,不能“穿墻”而過,所以在“曼哈頓幾何”中,這兩點最短距離用d(A,B)表示,又稱“曼哈頓距離”,即d(A,B)=|AC|+|CB|,因此“曼哈頓兩點間距離公式”:若A(x1,y1),B(x2,y2),則d(A,B)=|x2-x1|+|y2-y1|.
(1)①點A(3,5),B(2,-1),求d(A,B)的值.
②求圓心在原點,半徑為1的“曼哈頓單位圓”方程.
(2)已知點B(1,0),直線2x-y+2=0,求B點到直線的“曼哈頓距離”最小值;
(3)設三維空間4個點為Ai=(xi,yi,zi),i=1,2,3,4,且xi,yi,zi∈{0,1}.設其中所有兩點“曼哈頓距離”的平均值即,求d最大值,并列舉最值成立時的一組坐標.d組卷:264引用:6難度:0.3