試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2023-2024學年云南師大附中高二(上)月考數學試卷(10月份)

          發布:2024/9/6 6:0:10

          一、單項選擇題(本大題共8小題,每小題5分,共40分.在每小題所給的四個選項中,只有一項是符合題目要求的)

          • 1.已知集合M={x|x+2≥0},N={x|x-1<0}.則M∩N=(  )

            組卷:2585引用:19難度:0.9
          • 2.
            5
            1
            +
            i
            3
            2
            +
            i
            2
            -
            i
            =(  )

            組卷:253引用:7難度:0.8
          • 3.
            AB
            =(-1,2,3),
            BC
            =(1,-1,-5),則
            |
            AC
            |
            =(  )

            組卷:638引用:16難度:0.8
          • 4.一組數據4.3,6.5,7.8,6.2,9.6,15.9,7.6,8.1,10,12.3,11,3,則它們的75%分位數是(  )

            組卷:121引用:4難度:0.7
          • 5.已知角α的終邊上有一點P(1,3),則
            cos
            3
            π
            2
            -
            α
            +
            2
            cos
            -
            π
            +
            α
            的值為(  )

            組卷:574引用:5難度:0.7
          • 6.在三棱柱ABC-A1B1C1中,
            AB
            =
            a
            AC
            =
            b
            A
            A
            1
            =
            c
            ,若點D為B1C1的中點,則
            CD
            =(  )

            組卷:328引用:6難度:0.7
          • 7.已知正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,點E,F分別是B1C1和BB1的中點,M是線段D1F的中點,則直線AM和CE所成角的余弦值為(  )

            組卷:122引用:6難度:0.7

          四、解答題(共70分.解答應寫出文字說明,證明過程或演算步驟)

          • 21.已知a∈R,函數
            f
            x
            =
            lo
            g
            2
            x
            2
            -
            3
            x
            +
            a

            (1)若函數f(x)的圖象經過點(3,1),求不等式f(x)<1的解集;
            (2)設a>2,若對任意t∈[3,4],函數f(x)在區間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

            組卷:88引用:3難度:0.5
          • 22.如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.過點A作四棱錐P-ABCD的截面AEFG,分別交PD,PC,PB于點E,F,G,且PG:PB=2:3,
            PF
            =
            λ
            PC

            (1)若E為PD的中點,求實數λ的值;
            (2)若
            λ
            =
            2
            3
            ,求平面AGFE與平面ABCD所成角的正弦值.

            組卷:132引用:5難度:0.4
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正